Codimensions of identities of solvable Lie superalgebras
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 639-654.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study identities of Lie superalgebras over a field of characteristic zero. We construct a series of examples of finite-dimensional solvable Lie superalgebras with non-nilpotent commutator subalgebra for which the PI-exponent of codimension growth exists and is an integer number.
Keywords: identities, codimensions, Lie superalgebras, PI-exponent.
@article{IM2_2024_88_4_a2,
     author = {M. V. Zaicev and D. D. Repov\v{s}},
     title = {Codimensions of identities of solvable {Lie} superalgebras},
     journal = {Izvestiya. Mathematics },
     pages = {639--654},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a2/}
}
TY  - JOUR
AU  - M. V. Zaicev
AU  - D. D. Repovš
TI  - Codimensions of identities of solvable Lie superalgebras
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 639
EP  - 654
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a2/
LA  - en
ID  - IM2_2024_88_4_a2
ER  - 
%0 Journal Article
%A M. V. Zaicev
%A D. D. Repovš
%T Codimensions of identities of solvable Lie superalgebras
%J Izvestiya. Mathematics 
%D 2024
%P 639-654
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a2/
%G en
%F IM2_2024_88_4_a2
M. V. Zaicev; D. D. Repovš. Codimensions of identities of solvable Lie superalgebras. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 639-654. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a2/

[1] I. B. Volichenko, “Varieties of Lie algebras with identity $\bigl[[X_1,X_2,X_3], [X_4,X_5,X_6]\bigr]=0$ over a field of characteristic zero”, Siberian Math. J., 25:3 (1984), 370–382 | DOI

[2] A. Regev, “Existence of identities in $A\otimes B$”, Israel J. Math., 11 (1972), 131–152 | DOI | MR | Zbl

[3] V. N. Latyshev, “On Regev's theorem on identities in a tensor product of $PI$-algebras”, Uspekhi Mat. Nauk, 27:4(166) (1972), 213–214 | MR | Zbl

[4] Yu. Bahturin and V. Drensky, “Graded polynomial identities of matrices”, Linear Algebra Appl., 357:1-3 (2002), 15–34 | DOI | MR | Zbl

[5] A. Giambruno and M. Zaicev, “Codimension growth of special simple Jordan algebras”, Trans. Amer. Math. Soc., 362:6 (2010), 3107–3123 | DOI | MR | Zbl

[6] S. P. Mishchenko, “Growth in varieties of Lie algebras”, Russian Math. Surveys, 45:6 (1990), 27–52 | DOI

[7] M. V. Zaitsev, “Varieties of affine Kac–Moody algebras”, Math. Notes, 62:1 (1997), 80–86 | DOI

[8] M. V. Zaitsev and S. P. Mishchenko, “Identities for Lie superalgebras with a nilpotent commutator subalgebra”, Algebra and Logic, 47:5 (2008), 348–364 | DOI

[9] A. S. Dzhumadil'daev, “Codimension growth and non-Koszulity of Novikov operad”, Comm. Algebra, 39:8 (2011), 2943–2952 | DOI | MR | Zbl

[10] A. Giambruno and M. Zaicev, “On codimension growth of finitely generated associative algebras”, Adv. Math., 140:2 (1998), 145–155 | DOI | MR | Zbl

[11] A. Giambruno and M. Zaicev, “Exponential codimension growth of PI algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl

[12] M. V. Zaitsev, “Integrality of exponents of codimension growth of finite-dimensional Lie algebras”, Izv. Math., 66:3 (2002), 463–487 | DOI

[13] A. Giambruno, I. Shestakov, and M. Zaicev, “Finite-dimensional non-associative algebras and codimension growth”, Adv. in Appl. Math., 47:1 (2011), 125–139 | DOI | MR | Zbl

[14] A. Giambruno and M. Zaicev, “On codimension growth of finite-dimensional Lie superalgebras”, J. Lond. Math. Soc. (2), 85:2 (2012), 534–548 | DOI | MR | Zbl

[15] D. Repovš and M. Zaicev, “Graded identities of some simple Lie superalgebras”, Algebr. Represent. Theory, 17:5 (2014), 1401–1412 | DOI | MR | Zbl

[16] D. Repovš and M. Zaicev, “Graded codimensions of Lie superalgebra $b(2)$”, J. Algebra, 422 (2015), 1–10 | DOI | MR | Zbl

[17] D. D. Repovš and M. V. Zaicev, “Codimension growth of solvable Lie superalgebras”, J. Lie Theory, 28:4 (2018), 1189–1199 | MR | Zbl

[18] Yu. A. Bahturin, Identical relations in Lie algebras, Utrecht, VNU Science Press, b.v., 1987 | MR | Zbl

[19] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000 | MR | Zbl

[20] A. Giambruno and M. Zaicev, Polynomial identities and asymptotic methods, Math. Surveys Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[21] G. D. James, The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer, Berlin, 1978 | DOI | MR | Zbl

[22] M. V. Zaicev, “Graded identities in finite-dimensional algebras of codimensions of identities in associative algebras”, Moscow Univ. Math. Bull., 70:5 (2015), 234–236 | DOI

[23] M. Scheunert, The theory of Lie superalgebras. An introduction, Lecture Notes in Math., 716, Springer, Berlin, 1979 | DOI | MR | Zbl

[24] O. M. Di Vincenzo, P. Koshlukov, R. La Scala, “Involutions for upper triangular matrix algebras”, Adv. in Appl. Math., 37:4 (2006), 541–568 | DOI | MR | Zbl