The length of the cut locus on convex surfaces
Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 590-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the conjecture stating that, on any closed convex surface, the cut locus of a finite set $M$ with more than two points has length at least half the diameter of the surface.
Keywords: closed convex surface, cut locus, finite set, diameter.
@article{IM2_2024_88_3_a6,
     author = {Liping Yuan and T. Zamfirescu},
     title = {The length of the cut locus on convex surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {590--600},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a6/}
}
TY  - JOUR
AU  - Liping Yuan
AU  - T. Zamfirescu
TI  - The length of the cut locus on convex surfaces
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 590
EP  - 600
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a6/
LA  - en
ID  - IM2_2024_88_3_a6
ER  - 
%0 Journal Article
%A Liping Yuan
%A T. Zamfirescu
%T The length of the cut locus on convex surfaces
%J Izvestiya. Mathematics 
%D 2024
%P 590-600
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a6/
%G en
%F IM2_2024_88_3_a6
Liping Yuan; T. Zamfirescu. The length of the cut locus on convex surfaces. Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 590-600. http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a6/

[1] Y. Burago, M. Gromov, and G. Perelman, “A. D. Alexandrov spaces with curvature bounded below”, Russian Math. Surveys, 47:2 (1992), 1–58 | DOI

[2] J. Itoh, “The length of a cut locus on a surface and Ambrose's problem”, J. Differential Geom., 43:3 (1996), 642–651 | DOI | MR | Zbl

[3] K. Shiohama and M. Tanaka, “Cut loci and distance spheres on Alexandrov surfaces”, Actes de la table ronde de géométrie différentielle (Luminy 1992), Sémin. Congr., 1, Soc. Math. France, Paris, 1996, 531–559 | MR | Zbl

[4] T. Zamfirescu, “Many endpoints and few interior points of geodesics”, Invent. Math., 69:2 (1982), 253–257 | DOI | MR | Zbl

[5] T. Zamfirescu, “Extreme points of the distance function on convex surfaces”, Trans. Amer. Math. Soc., 350:4 (1998), 1395–1406 | DOI | MR | Zbl

[6] J. J. Hebda, “Metric structure of cut loci in surfaces and Ambrose's problem”, J. Differential Geom., 40:3 (1994), 621–642 | DOI | MR | Zbl

[7] J. Itoh and T. Zamfirescu, “On the length of the cut locus on surfaces”, Stochastic geometry, convex bodies, empirical measures and applications to engineering science (Tropea 2001), v. II, Rend. Circ. Mat. Palermo (2) Suppl., 70, Circ. Mat. Palermo, Palermo, 2002, 53–58 | MR | Zbl

[8] J. Itoh and T. Zamfirescu, “On the length of the cut locus for finitely many points”, Adv. Geom., 5:1 (2005), 97–106 | DOI | MR | Zbl

[9] A. D. Alexandrov, Selected works, v. 2, Intrinsic geometry of convex surfaces, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl

[10] A. D. Alexandrow, Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955 | MR | Zbl

[11] H. Busemann, Convex surfaces, Interscience Tracts in Pure and Applied Mathematics, 6, Intersci. Publ., New York–London, 1958 | MR | Zbl

[12] T. Zamfirescu, “On the cut locus in Alexandrov spaces and applications to convex surfaces”, Pacific J. Math., 217:2 (2004), 375–386 | DOI | MR | Zbl