The length of the cut locus on convex surfaces
Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 590-600

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the conjecture stating that, on any closed convex surface, the cut locus of a finite set $M$ with more than two points has length at least half the diameter of the surface.
Keywords: closed convex surface, cut locus, finite set, diameter.
@article{IM2_2024_88_3_a6,
     author = {Liping Yuan and T. Zamfirescu},
     title = {The length of the cut locus on convex surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {590--600},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a6/}
}
TY  - JOUR
AU  - Liping Yuan
AU  - T. Zamfirescu
TI  - The length of the cut locus on convex surfaces
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 590
EP  - 600
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a6/
LA  - en
ID  - IM2_2024_88_3_a6
ER  - 
%0 Journal Article
%A Liping Yuan
%A T. Zamfirescu
%T The length of the cut locus on convex surfaces
%J Izvestiya. Mathematics 
%D 2024
%P 590-600
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a6/
%G en
%F IM2_2024_88_3_a6
Liping Yuan; T. Zamfirescu. The length of the cut locus on convex surfaces. Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 590-600. http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a6/