Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_3_a4, author = {E. V. Nozdrinova and O. V. Pochinka and E. V. Tsaplina}, title = {Criterion for the existence of a connected characteristic space of orbits in a~gradient-like diffeomorphism of a surface}, journal = {Izvestiya. Mathematics }, pages = {515--541}, publisher = {mathdoc}, volume = {88}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a4/} }
TY - JOUR AU - E. V. Nozdrinova AU - O. V. Pochinka AU - E. V. Tsaplina TI - Criterion for the existence of a connected characteristic space of orbits in a~gradient-like diffeomorphism of a surface JO - Izvestiya. Mathematics PY - 2024 SP - 515 EP - 541 VL - 88 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a4/ LA - en ID - IM2_2024_88_3_a4 ER -
%0 Journal Article %A E. V. Nozdrinova %A O. V. Pochinka %A E. V. Tsaplina %T Criterion for the existence of a connected characteristic space of orbits in a~gradient-like diffeomorphism of a surface %J Izvestiya. Mathematics %D 2024 %P 515-541 %V 88 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a4/ %G en %F IM2_2024_88_3_a4
E. V. Nozdrinova; O. V. Pochinka; E. V. Tsaplina. Criterion for the existence of a connected characteristic space of orbits in a~gradient-like diffeomorphism of a surface. Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 515-541. http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a4/
[1] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 | DOI
[2] V. Z. Grines, T. V. Medvedev, and O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016 | DOI | MR | Zbl
[3] C. Bonatti, V. Grines, and O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558 | DOI | MR | Zbl
[4] C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl
[5] V. Z. Grines, E. A. Gurevich, and O. V. Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic intersections”, J. Math. Sci. (N.Y.), 208:1 (2015), 81–90 | DOI | MR | Zbl
[6] V. Grines, E. Gurevich, O. Pochinka, and D. Malyshev, “On topological classification of Morse–Smale diffeomorphisms on the sphere $S^n$ ($n>3$)”, Nonlinearity, 33:12 (2020), 7088–7113 | DOI | MR | Zbl
[7] D. Malyshev, A. Morozov, and O. Pochinka, “Combinatorial invariant for Morse–Smale diffeomorphisms on surfaces with orientable heteroclinic”, Chaos, 31:2 (2021), 023119 | DOI | MR | Zbl
[8] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, and O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110 | DOI
[9] E. Nozdrinova, “The existence connected characteristic space at the gradient-like diffeomorphisms of surfaces”, Zhurnal SVMO, 19:2 (2017), 91–97 | DOI | Zbl
[10] J. Palis, Jr. and W. de Melo, Geometric theory of dynamical systems. An introduction, Transl. from the Portuguese, Springer-Verlag, New York–Berlin, 1982 | DOI | MR | Zbl
[11] C. Kosniowski, A first course in algebraic topology, Cambridge Univ. Press, Cambridge–New York, 1980 | DOI | MR | Zbl
[12] V. Z. Grines, S. Kh. Kapkaeva, and O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412 | DOI
[13] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl
[14] D. Rolfsen, Knots and links, AMS Chelsea Publ. Ser., 346, Reprint with corr. of the 1976 original, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl