Algebraic de Rham theorem and Baker--Akhiezer function
Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 506-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the case of algebraic curves (compact Riemann surfaces), it is shown that de Rham cohomology group $H^1_{\mathrm{dR}}(X,\mathbb{C})$ of a genus $g$ of the Riemann surface $X$ has a natural structure of a symplectic vector space. Every choice of a non-special effective divisor $D$ of degree $g$ on $X$ defines a symplectic basis of $H^1_{\mathrm{dR}}(X,\mathbb{C})$ consisting of holomorphic differentials and differentials of the second kind with poles on $D$. This result, which is the algebraic de Rham theorem, is used to describe the tangent space to Picard and Jacobian varieties of $X$ in terms of differentials of the second kind, and to define a natural vector fields on the Jacobian of the curve $X$ that move points of the divisor $D$. In terms of the Lax formalism on algebraic curves, these vector fields correspond to the Dubrovin equations in the theory of integrable systems, and the Baker–Akhierzer function is naturally obtained by the integration along the integral curves.
Keywords: Riemann surface, divisor, line bundle, Riemann–Roch theorem, differentials of the second kind, algebraic de Rham theorem, Picard and Jacobian varieties, vector field on the Jacobian variety, Lax representation, Dubrovin equation, Baker–Akhiezer function.
@article{IM2_2024_88_3_a3,
     author = {I. M. Krichever and L. A. Takhtadzhyan},
     title = {Algebraic de {Rham} theorem and {Baker--Akhiezer} function},
     journal = {Izvestiya. Mathematics },
     pages = {506--514},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a3/}
}
TY  - JOUR
AU  - I. M. Krichever
AU  - L. A. Takhtadzhyan
TI  - Algebraic de Rham theorem and Baker--Akhiezer function
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 506
EP  - 514
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a3/
LA  - en
ID  - IM2_2024_88_3_a3
ER  - 
%0 Journal Article
%A I. M. Krichever
%A L. A. Takhtadzhyan
%T Algebraic de Rham theorem and Baker--Akhiezer function
%J Izvestiya. Mathematics 
%D 2024
%P 506-514
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a3/
%G en
%F IM2_2024_88_3_a3
I. M. Krichever; L. A. Takhtadzhyan. Algebraic de Rham theorem and Baker--Akhiezer function. Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 506-514. http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a3/

[1] W. V. D. Hodge and M. F. Atiyah, “Integrals of the second kind on an algebraic variety”, Ann. of Math. (2), 62 (1955), 56–91 | DOI | MR | Zbl

[2] A. Grothendieck, “On the de Rham cohomology of algebraic varieties”, Inst. Hautes Études Sci. Publ. Math., 29 (1966), 95–103 | DOI | MR | Zbl

[3] Ph. Griffiths and J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978 | MR | Zbl

[4] L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Classics Math., Reprint of the 1987 original, Springer, Berlin, 2007 | DOI | MR | Zbl

[5] I. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[6] I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752 | DOI | MR | Zbl

[7] B. A. Dubrovin, “Periodic problems for the Korteweg–de Vries equation in the class of finite band potentials”, Funct. Anal. Appl., 9:3 (1975), 215–223 | DOI

[8] I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry”, Funct. Anal. Appl., 11:1 (1977), 12–26 | DOI

[9] O. Forster, Riemannsche Flächen, Heidelberger Taschenbucher, 184, Springer-Verlag, Berlin–New York, 1977 | DOI | MR | Zbl

[10] C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surveys, VI, Amer. Math. Soc., New York, 1951 | MR | Zbl

[11] M. Eichler, Introduction to the theory of algebraic numbers and functions, Transl. from the German, Pure Appl. Math., 23, Academic Press, New York–London, 1966 | MR | Zbl

[12] L. A. Takhtajan, “Quantum field theories on algebraic curves. I. Additive bosons”, Izv. Math., 77:2 (2013), 378–406 | DOI

[13] K. Iwasawa, Algebraic functions, Transl. from the Japan., Transl. Math. Monogr., 118, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[14] I. Kra, Automorphic forms and Kleinian groups, Math. Lecture Note Ser., W. A. Benjamin, Inc., Reading, MA, 1972 | MR | Zbl