634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane
Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 419-467

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1987 Brehm and Kühnel showed that any combinatorial $d$-manifold with less than $3d/2+3$ vertices is PL homeomorphic to the sphere and any combinatorial $d$-manifold with exactly $3d/2+3$ vertices is PL homeomorphic to either the sphere or a manifold like a projective plane in the sense of Eells and Kuiper. The latter possibility may occur for $d\in\{2,4,8,16\}$ only. There exist a unique $6$-vertex triangulation of $\mathbb{RP}^2$, a unique $9$-vertex triangulation of $\mathbb{CP}^2$, and at least three $15$-vertex triangulations of $\mathbb{HP}^2$. However, until now, the question of whether there exists a $27$-vertex triangulation of a manifold like the octonionic projective plane has remained open. We solve this problem by constructing a lot of examples of such triangulations. Namely, we construct $634$ vertex-transitive $27$-vertex combinatorial $16$-manifolds like the octonionic projective plane. Four of them have symmetry group $\mathrm{C}_3^3\rtimes \mathrm{C}_{13}$ of order $351$, and the other $630$ have symmetry group $\mathrm{C}_3^3$ of order $27$. Further, we construct more than $10^{103}$ non-vertex-transitive $27$-vertex combinatorial $16$-manifolds like the octonionic projective plane. Most of them have trivial symmetry group, but there are also symmetry groups $\mathrm{C}_3$, $\mathrm{C}_3^2$, and $\mathrm{C}_{13}$. We conjecture that all the triangulations constructed are PL homeomorphic to the octonionic projective plane $\mathbb{OP}^2$. Nevertheless, we have no proof of this fact so far.
Keywords: minimal triangulation, octonionic projective plane, manifold like a projective plane, Kühnel triangulation, Brehm–Kühnel triangulations, vertex-transitive triangulation, combinatorial manifold.
@article{IM2_2024_88_3_a1,
     author = {A. A. Gaifullin},
     title = {634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane},
     journal = {Izvestiya. Mathematics },
     pages = {419--467},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a1/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - 634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 419
EP  - 467
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a1/
LA  - en
ID  - IM2_2024_88_3_a1
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T 634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane
%J Izvestiya. Mathematics 
%D 2024
%P 419-467
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a1/
%G en
%F IM2_2024_88_3_a1
A. A. Gaifullin. 634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane. Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 419-467. http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a1/