634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane
Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 419-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1987 Brehm and Kühnel showed that any combinatorial $d$-manifold with less than $3d/2+3$ vertices is PL homeomorphic to the sphere and any combinatorial $d$-manifold with exactly $3d/2+3$ vertices is PL homeomorphic to either the sphere or a manifold like a projective plane in the sense of Eells and Kuiper. The latter possibility may occur for $d\in\{2,4,8,16\}$ only. There exist a unique $6$-vertex triangulation of $\mathbb{RP}^2$, a unique $9$-vertex triangulation of $\mathbb{CP}^2$, and at least three $15$-vertex triangulations of $\mathbb{HP}^2$. However, until now, the question of whether there exists a $27$-vertex triangulation of a manifold like the octonionic projective plane has remained open. We solve this problem by constructing a lot of examples of such triangulations. Namely, we construct $634$ vertex-transitive $27$-vertex combinatorial $16$-manifolds like the octonionic projective plane. Four of them have symmetry group $\mathrm{C}_3^3\rtimes \mathrm{C}_{13}$ of order $351$, and the other $630$ have symmetry group $\mathrm{C}_3^3$ of order $27$. Further, we construct more than $10^{103}$ non-vertex-transitive $27$-vertex combinatorial $16$-manifolds like the octonionic projective plane. Most of them have trivial symmetry group, but there are also symmetry groups $\mathrm{C}_3$, $\mathrm{C}_3^2$, and $\mathrm{C}_{13}$. We conjecture that all the triangulations constructed are PL homeomorphic to the octonionic projective plane $\mathbb{OP}^2$. Nevertheless, we have no proof of this fact so far.
Keywords: minimal triangulation, octonionic projective plane, manifold like a projective plane, Kühnel triangulation, Brehm–Kühnel triangulations, vertex-transitive triangulation, combinatorial manifold.
@article{IM2_2024_88_3_a1,
     author = {A. A. Gaifullin},
     title = {634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane},
     journal = {Izvestiya. Mathematics },
     pages = {419--467},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a1/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - 634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 419
EP  - 467
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a1/
LA  - en
ID  - IM2_2024_88_3_a1
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T 634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane
%J Izvestiya. Mathematics 
%D 2024
%P 419-467
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a1/
%G en
%F IM2_2024_88_3_a1
A. A. Gaifullin. 634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of~manifolds like the octonionic projective plane. Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 419-467. http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a1/

[1] A. V. Alekseevskii, “Finite commutative Jordan subgroups of complex simple Lie groups”, Funct. Anal. Appl., 8:4 (1974), 277–279 | DOI

[2] P. Arnoux and A. Marin, “The Kühnel triangulation of the complex projective plane from the view point of complex crystallography. II”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45:2 (1991), 167–244 | DOI | MR | Zbl

[3] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39:2 (2002), 145–205 ; arXiv: math/0105155 | DOI | MR | Zbl

[4] B. Bagchi and B. Datta, “On Kühnel's 9-vertex complex projective plane”, Geom. Dedicata, 50:1 (1994), 1–13 | DOI | MR | Zbl

[5] B. Bagchi and B. Datta, “A short proof of the uniqueness of Kühnel's 9-vertex complex projective plane”, Adv. Geom., 1:2 (2001), 157–163 | DOI | MR | Zbl

[6] B. Bagchi and B. Datta, “On $k$-stellated and $k$-stacked spheres”, Discrete Math., 313:20 (2013), 2318–2329 ; arXiv: 1208.1389 | DOI | MR | Zbl

[7] B. Benedetti and F. H. Lutz, “Random discrete Morse theory and a new library of triangulations”, Exp. Math., 23:1 (2014), 66–94 ; arXiv: 1303.6422 | DOI | MR | Zbl

[8] A. Björner and F. H. Lutz, “Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere”, Exp. Math., 9:2 (2000), 275–289 | DOI | MR | Zbl

[9] A. Borel, “Le plan projectif des octaves et les sphéres comme espaces homogènes”, C. R. Acad. Sci. Paris, 230 (1950), 1378–1380 | MR | Zbl

[10] U. Brehm and W. Kühnel, “Combinatorial manifolds with few vertices”, Topology, 26:4 (1987), 465–473 | DOI | MR | Zbl

[11] U. Brehm and W. Kühnel, “15-vertex triangulations of an 8-manifold”, Math. Ann., 294:1 (1992), 167–193 | DOI | MR | Zbl

[12] H. Bruggesser and P. Mani, “Shellable decompositions of cells and spheres”, Math. Scand., 29:2 (1971), 197–205 | DOI | MR | Zbl

[13] F. Chapoton and L. Manivel, “Triangulations and Severi varieties”, Exp. Math., 22:1 (2013), 60–73 ; arXiv: 1109.6490 | DOI | MR | Zbl

[14] J. H. Conway and D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A. K. Peters, Ltd./CRC Press, Natick, MA, 2003 | DOI | MR | Zbl

[15] G. Danaraj and V. Klee, “Which spheres are shellable?”, Algorithmic aspects of combinatorics, Ann. Discrete Math., 2, North-Holland Publ. Comp., 1978, 33–52 | DOI | MR | Zbl

[16] R. Dougherty, V. Faber, and M. Murphy, “Unflippable tetrahedral complexes”, Discrete Comput. Geom., 32:3 (2004), 309–315 | DOI | MR | Zbl

[17] J. Eells, Jr. and N. H. Kuiper, “Manifolds which are like projective planes”, Inst. Hautes Études Sci. Publ. Math., 14 (1962), 5–46 | DOI | MR | Zbl

[18] A. Engström, “Discrete Morse functions from Fourier transforms”, Exp. Math., 18:1 (2009), 45–53 | DOI | MR | Zbl

[19] A. A. Gaifullin, “Local formulae for combinatorial Pontryagin classes”, Izv. Math., 68:5 (2004), 861–910 | DOI

[20] A. A. Gaifullin, “The construction of combinatorial manifolds with prescribed sets of links of vertices”, Izv. Math., 72:5 (2008), 845–899 ; arXiv: 0801.4741 | DOI

[21] A. A. Gaifullin, “A minimal triangulation of complex projective plane admitting a chess colouring of four-dimensional simplices”, Proc. Steklov Inst. Math., 266 (2009), 29–48 ; arXiv: 0904.4222 | DOI

[22] A. A. Gaifullin, “Configuration spaces, bistellar moves, and combinatorial formulae for the first Pontryagin class”, Proc. Steklov Inst. Math., 268 (2010), 70–86 ; arXiv: 0912.3933 | DOI

[23] A. A. Gaifullin, Triangulations of the quaternionic projective plane and manifolds like the octonionic projective plane https://github.com/agaif/Triangulations-like-OP2

[24] A. A. Gaifullin, On possible symmetry groups of 27-vertex triangulations of manifolds like the octonionic projective plane, arXiv: 2310.16679

[25] A. A. Gaifullin, New examples and partial classification of 15-vertex triangulations of the quaternionic projective plane, arXiv: 2311.11309

[26] A. A. Gaifullin and D. A. Gorodkov, “An explicit local combinatorial formula for the first Pontryagin class”, Russian Math. Surveys, 74:6 (2019), 1120–1122 | DOI

[27] D. A. Gorodkov, “A minimal triangulation of the quaternionic projective plane”, Russian Math. Surveys, 71:6 (2016), 1140–1142 | DOI

[28] D. Gorodkov, “A 15-vertex triangulation of the quaternionic projective plane”, Discrete Comput. Geom., 62:2 (2019), 348–373 ; arXiv: 1603.05541 | DOI | MR | Zbl

[29] R. L. Griess, Jr., “Elementary abelian $p$-subgroups of algebraic groups”, Geom. Dedicata, 39:3 (1991), 253–305 | DOI | MR | Zbl

[30] B. Grünbaum and V. P. Sreedharan, “An enumeration of simplicial $4$-polytopes with $8$ vertices”, J. Combinatorial Theory, 2:4 (1967), 437–465 | DOI | MR | Zbl

[31] J. Kahn, M. Saks, and D. Sturtevant, “A topological approach to evasiveness”, Combinatorica, 4:4 (1984), 297–306 | DOI | MR | Zbl

[32] E. G. Köhler and F. H. Lutz, Triangulated manifolds with few vertices: vertex-transitive triangulations I, arXiv: math/0506520

[33] L. Kramer, “Projective planes and their look-alikes”, J. Differential Geom., 64:1 (2003), 1–55 ; arXiv: math/0206145 | DOI | MR | Zbl

[34] W. Kühnel, Tight polyhedral submanifolds and tight triangulations, Lecture Notes in Math., 1612, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl

[35] W. Kühnel and T. F. Banchoff, “The 9-vertex complex projective plane”, Math. Intelligencer, 5:3 (1983), 11–22 | DOI | MR | Zbl

[36] W. Kühnel and G. Lassmann, “The unique 3-neighborly 4-manifold with few vertices”, J. Combin. Theory Ser. A, 35:2 (1983), 173–184 | DOI | MR | Zbl

[37] J. M. Landsberg and L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Algebra, 239:2 (2001), 477–512 ; arXiv: math/9908039 | DOI | MR | Zbl

[38] R. Lazarsfeld, “An example of 16-dimensional projective variety with a 25-dimensional secant variety”, Math. Letters, 7 (1981), 1–4

[39] W. B. R. Lickorish, “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320 ; arXiv: math/9911256 | DOI | MR | Zbl

[40] F. H. Lutz, Triangulated manifolds with few vertices: combinatorial manifolds, arXiv: math/0506372

[41] J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405 | DOI | MR | Zbl

[42] B. Morin and M. Yoshida, “The Kühnel triangulation of the complex projective plane from the view point of complex crystallography. I”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45:1 (1991), 55–142 | DOI | MR | Zbl

[43] A. Nabutovsky, “Geometry of the space of triangulations of a compact manifold”, Comm. Math. Phys., 181:2 (1996), 303–330 | DOI | MR | Zbl

[44] U. Pachner, “Bistellare Äquivalenz kombinatorischer Mannigfaltigkeiten”, Arch. Math. (Basel), 30:1 (1978), 89–98 | DOI | MR | Zbl

[45] U. von Pachner, “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Univ. Hamburg, 57 (1987), 69–86 | DOI | MR | Zbl

[46] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergeb. Math. Grenzgeb., 69, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl

[47] N. Shimada, “Differentiable structures on the 15-sphere and Pontrjagin classes of certain manifolds”, Nagoya Math. J., 12 (1957), 59–69 | DOI | MR | Zbl

[48] I. A. Volodin, V. E. Kuznetsov, and A. T. Fomenko, “The problem of discriminating algorithmically the standard three-dimensional sphere”, Russian Math. Surveys, 29:5 (1974), 71–172 | DOI

[49] I. Yokota, “Realization of automorphisms $\sigma$ of order $3$ and $G^{\sigma}$ of compact exceptional Lie groups $G$. I. $G=G_2,F_4,E_6$”, J. Fac. Sci. Shinshu Univ., 20:2 (1985), 131–144 | MR | Zbl

[50] F. L. Zak, “Projections of algebraic varieties”, Math. USSR-Sb., 44:4 (1983), 535–544 | DOI

[51] F. L. Zak, “Severi varieties”, Math. USSR-Sb., 54:1 (1986), 113–127 | DOI

[52] E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Études Sci., Paris, 1963 | Zbl