Geometric constructions in the theory of analytic complexity
Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 411-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two geometric constructions are considered in the context of analytic complexity. Using the first construction, on the set of analytic functions, we build a metric invariant under the action of the gauge group. With the help of the second construction, we obtain a necessary differential algebraic condition for membership of a function in the tangent space to the class of bivariate functions of analytic complexity $\le 2$ at the point $z_0=x^3 y^2 +xy$. From this result we show that the polynomial $z=x^3y^2+xy + \pi x^2 y^3$ of degree 5 has analytic complexity 3.
Keywords: analytic function, analytic complexity, metric space.
@article{IM2_2024_88_3_a0,
     author = {V. K. Beloshapka},
     title = {Geometric constructions in the theory of analytic complexity},
     journal = {Izvestiya. Mathematics },
     pages = {411--418},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a0/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Geometric constructions in the theory of analytic complexity
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 411
EP  - 418
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a0/
LA  - en
ID  - IM2_2024_88_3_a0
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Geometric constructions in the theory of analytic complexity
%J Izvestiya. Mathematics 
%D 2024
%P 411-418
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a0/
%G en
%F IM2_2024_88_3_a0
V. K. Beloshapka. Geometric constructions in the theory of analytic complexity. Izvestiya. Mathematics , Tome 88 (2024) no. 3, pp. 411-418. http://geodesic.mathdoc.fr/item/IM2_2024_88_3_a0/

[1] D. Hilbert, “Mathematische Probleme”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1900 (1900), 253–297 | Zbl

[2] A. Ostrowski, “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8:3-4 (1920), 241–298 ; E. Ch. Hansen, Y. Stone, J. Wolfson, Alexander Ostrowski's “On Dirichlet series and algebraic differential equations”, 2022, arXiv: 2211.02088 | DOI | MR | Zbl

[3] V. I. Arnol'd, “On functions of three variables”, Dokl. Akad. Nauk SSSR, 114:4 (1957), 679–681 (Russian) | MR | Zbl

[4] A. N. Kolmogorov, “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition”, Dokl. Akad. Nauk SSSR, 114:5 (1957), 953–956 (Russian) | MR | Zbl

[5] A. G. Vitushkin, “On Hilbert's thirteenth problem and related questions”, Russian Math. Surveys, 59:1 (2004), 11–25 | DOI

[6] V. K. Beloshapka, “Analytical complexity: development of the topic”, Russ. J. Math. Phys., 19:4 (2012), 428–439 | DOI | MR | Zbl

[7] V. K. Beloshapka, “Decomposition of functions of finite analytical complexity”, J. Sib. Fed. Univ. Math. Phys., 11:6 (2018), 680–685 | DOI | MR | Zbl

[8] I. Kaplansky, An introduction to differential algebra, Actualités Sci. Ind., 1251, Publ. Inst. Math. Univ. Nancago, 5, Hermann, Paris, 1957 | MR | Zbl

[9] V. K. Beloshapka, “On the complexity of the differential-algebraic description of analytic complexity classes”, Math. Notes, 105:3 (2019), 309–315 | DOI

[10] M. A. Stepanova, “On functions of finite analytic complexity”, Tr. Mosk. Mat. Obs., 83, no. 1, MCCME, Moscow, 2022, 1–16 (Russian)