Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_2_a9, author = {A. V. Tsiganov}, title = {On rotation invariant integrable systems}, journal = {Izvestiya. Mathematics }, pages = {389--409}, publisher = {mathdoc}, volume = {88}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/} }
A. V. Tsiganov. On rotation invariant integrable systems. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 389-409. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/
[1] V. V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics”, Russian Math. Surveys, 38:1 (1983), 1–76 | DOI
[2] V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140 | DOI
[3] V. V. Kozlov, “Quadratic conservation laws for equations of mathematical physics”, Russian Math. Surveys, 75:3 (2020), 445–494 | DOI
[4] J. Drach, “Sur l'intégration logique des équations de la dynamique à deux variables. Forces conservatives. Intégrales cubiques. Mouvements dans le plan”, C. R. Acad. Sci. Paris, 200 (1935), 22–26 | Zbl
[5] J. Hietarinta, “Direct methods for the search of the second invariant”, Phys. Rep., 147:2 (1987), 87–154 | DOI | MR
[6] H. Yoshida, “Necessary condition for the existence of algebraic first integrals. II. Condition for algebraic integrability”, Celestial Mech., 31:4 (1983), 381–399 | DOI | MR | Zbl
[7] B. Dorizzi, B. Grammaticos, J. Hietarinta, A. Ramani, and F. Schwarz, “New integrable three-dimensional quartic potentials”, Phys. Lett. A, 116:9 (1986), 432–436 | DOI | MR
[8] J. J. Morales-Ruiz and J.-P. Ramis, “Integrability of dynamical systems through differential Galois theory: a practical guide”, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010, 143–220 | DOI | MR | Zbl
[9] N. H. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1985 | MR | Zbl
[10] J. A. Schouten, Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Grundlehren Math. Wiss., 10, 2nd ed., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954 | DOI | MR | Zbl
[11] M. Crampin, “Hidden symmetries and Killing tensors”, Rep. Math. Phys., 20:1 (1984), 31–40 | DOI | MR | Zbl
[12] P. Stäckel, Über die Integration der Hamilton–Jacobischen-Differentialgleichung mittels Separation der Variabeln, Habil.-Schr., Vereinigten Friedrichs–Univ. Halle–Wittenberg, Halle, 1891 | DOI
[13] F. Magri, P. Casati, G. Falqui, and M. Pedroni, “Eight lectures on integrable systems”, Integrability of nonlinear systems (Pondicherry, 1996), Lecture Notes in Phys., 638, 2nd rev. ed., Springer-Verlag, Berlin, 2004, 209–250 | DOI | MR | Zbl
[14] A. J. Maciejewski, M. Przybylska, and A. V. Tsiganov, “On algebraic construction of certain integrable and super-integrable systems”, Phys. D, 240:18 (2011), 1426–1448 | DOI | MR | Zbl
[15] A. P. Fordy and P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Comm. Math. Phys., 89:3 (1983), 427–443 | DOI | MR | Zbl
[16] A. Fordy, S. Woiciechowski, and I. Marshall, “A family of integrable quartic potentials related to symmetric spaces”, Phys. Lett. A, 113:8 (1986), 395–400 | DOI | MR
[17] A. P. Fordy and Qing Huang, “Stationary flows revisited”, SIGMA, 19 (2023), 015 | DOI | MR | Zbl
[18] A. G. Reiman and M. A. Semenov-Tian-Shansky, Integrable systems, Institute for Computer Studies, Moscow–Izhevsk, 2003 (Russian)
[19] A. V. Tsiganov, “On maximally superintegrable systems”, Regul. Chaotic Dyn., 13:3 (2008), 178–190 | DOI | MR | Zbl
[20] W. Miller, Jr., S. Post, and P. Winternitz, “Classical and quantum superintegrability with applications”, J. Phys. A, 46:42 (2013), 423001 | DOI | MR | Zbl
[21] A. V. Tsiganov, “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaotic Dyn., 14:3 (2009), 389–406 | DOI | MR | Zbl
[22] A. V. Tsiganov, “Elliptic curve arithmetic and superintegrable systems”, Phys. Scr., 94:8 (2019), 085207 | DOI
[23] A. V. Tsiganov, “Addition theorems and the Drach superintegrable systems”, J. Phys. A, 41:33 (2008), 335204 | DOI | MR | Zbl
[24] Yu. A. Grigoriev and A. V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates”, Phys. Lett. A, 382:32 (2018), 2092–2096 | DOI | MR | Zbl
[25] A. V. Tsiganov, “Superintegrable systems and Riemann–Roch theorem”, J. Math. Phys., 61:1 (2020), 012701 | DOI | MR | Zbl
[26] M. Karlovini and K. Rosquist, “A unified treatment of cubic invariants at fixed and arbitrary energy”, J. Math. Phys., 41:1 (2000), 370–384 | DOI | MR | Zbl
[27] V. B. Kuznetsov, “Quadrics on real Riemannian spaces of constant curvature: Separation of variables and connection with Gaudin magnet”, J. Math. Phys., 33:9 (1992), 3240–3254 | DOI | MR | Zbl
[28] E. G. Kalnins, V. B. Kuznetsov, and W. Miller, Jr., “Quadrics on complex Riemannian spaces of constant curvature, separation of variables, and the Gaudin magnet”, J. Math. Phys., 35:4 (1994), 1710–1731 | DOI | MR | Zbl
[29] A. V. Tsiganov and E. O. Porubov, “On a class of quadratic conservation laws for Newton equations in Euclidean space”, Theoret. and Math. Phys., 216:2 (2023), 1209–1237 | DOI
[30] A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475 | DOI | MR | Zbl
[31] A. V. Tsiganov, “Two integrable systems with integrals of motion of degree four”, Theoret. and Math. Phys., 186:3 (2016), 383–394 | DOI
[32] A. V. Tsiganov, “On integrable systems outside Nijenhuis and Haantjes geometry”, J. Geom. Phys., 178 (2022), 104571 | DOI | MR | Zbl
[33] A. V. Tsiganov, “On Killing tensors in three-dimensional Euclidean space”, Theoret. and Math. Phys., 212:1 (2022), 1019–1032 | DOI