On rotation invariant integrable systems
Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 389-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding the first integrals of the Newton equations in the $n$-dimensional Euclidean space is reduced to that of finding two integrals of motion on the Lie algebra $\mathrm{so}(4)$ which are invariant under $m\geq n-2$ rotation symmetry fields. As an example, we obtain several families of integrable and superintegrable systems with first, second, and fourth-degree integrals of motion in the momenta. The corresponding Hamilton–Jacobi equation does not admit separation variables in any of the known curvilinear orthogonal coordinate systems in the Euclidean space.
Keywords: differential equation, first integral, symmetry field
Mots-clés : quartic invariant.
@article{IM2_2024_88_2_a9,
     author = {A. V. Tsiganov},
     title = {On rotation invariant integrable systems},
     journal = {Izvestiya. Mathematics },
     pages = {389--409},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On rotation invariant integrable systems
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 389
EP  - 409
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/
LA  - en
ID  - IM2_2024_88_2_a9
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On rotation invariant integrable systems
%J Izvestiya. Mathematics 
%D 2024
%P 389-409
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/
%G en
%F IM2_2024_88_2_a9
A. V. Tsiganov. On rotation invariant integrable systems. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 389-409. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/

[1] V. V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics”, Russian Math. Surveys, 38:1 (1983), 1–76 | DOI

[2] V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140 | DOI

[3] V. V. Kozlov, “Quadratic conservation laws for equations of mathematical physics”, Russian Math. Surveys, 75:3 (2020), 445–494 | DOI

[4] J. Drach, “Sur l'intégration logique des équations de la dynamique à deux variables. Forces conservatives. Intégrales cubiques. Mouvements dans le plan”, C. R. Acad. Sci. Paris, 200 (1935), 22–26 | Zbl

[5] J. Hietarinta, “Direct methods for the search of the second invariant”, Phys. Rep., 147:2 (1987), 87–154 | DOI | MR

[6] H. Yoshida, “Necessary condition for the existence of algebraic first integrals. II. Condition for algebraic integrability”, Celestial Mech., 31:4 (1983), 381–399 | DOI | MR | Zbl

[7] B. Dorizzi, B. Grammaticos, J. Hietarinta, A. Ramani, and F. Schwarz, “New integrable three-dimensional quartic potentials”, Phys. Lett. A, 116:9 (1986), 432–436 | DOI | MR

[8] J. J. Morales-Ruiz and J.-P. Ramis, “Integrability of dynamical systems through differential Galois theory: a practical guide”, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010, 143–220 | DOI | MR | Zbl

[9] N. H. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1985 | MR | Zbl

[10] J. A. Schouten, Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Grundlehren Math. Wiss., 10, 2nd ed., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954 | DOI | MR | Zbl

[11] M. Crampin, “Hidden symmetries and Killing tensors”, Rep. Math. Phys., 20:1 (1984), 31–40 | DOI | MR | Zbl

[12] P. Stäckel, Über die Integration der Hamilton–Jacobischen-Differentialgleichung mittels Separation der Variabeln, Habil.-Schr., Vereinigten Friedrichs–Univ. Halle–Wittenberg, Halle, 1891 | DOI

[13] F. Magri, P. Casati, G. Falqui, and M. Pedroni, “Eight lectures on integrable systems”, Integrability of nonlinear systems (Pondicherry, 1996), Lecture Notes in Phys., 638, 2nd rev. ed., Springer-Verlag, Berlin, 2004, 209–250 | DOI | MR | Zbl

[14] A. J. Maciejewski, M. Przybylska, and A. V. Tsiganov, “On algebraic construction of certain integrable and super-integrable systems”, Phys. D, 240:18 (2011), 1426–1448 | DOI | MR | Zbl

[15] A. P. Fordy and P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Comm. Math. Phys., 89:3 (1983), 427–443 | DOI | MR | Zbl

[16] A. Fordy, S. Woiciechowski, and I. Marshall, “A family of integrable quartic potentials related to symmetric spaces”, Phys. Lett. A, 113:8 (1986), 395–400 | DOI | MR

[17] A. P. Fordy and Qing Huang, “Stationary flows revisited”, SIGMA, 19 (2023), 015 | DOI | MR | Zbl

[18] A. G. Reiman and M. A. Semenov-Tian-Shansky, Integrable systems, Institute for Computer Studies, Moscow–Izhevsk, 2003 (Russian)

[19] A. V. Tsiganov, “On maximally superintegrable systems”, Regul. Chaotic Dyn., 13:3 (2008), 178–190 | DOI | MR | Zbl

[20] W. Miller, Jr., S. Post, and P. Winternitz, “Classical and quantum superintegrability with applications”, J. Phys. A, 46:42 (2013), 423001 | DOI | MR | Zbl

[21] A. V. Tsiganov, “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaotic Dyn., 14:3 (2009), 389–406 | DOI | MR | Zbl

[22] A. V. Tsiganov, “Elliptic curve arithmetic and superintegrable systems”, Phys. Scr., 94:8 (2019), 085207 | DOI

[23] A. V. Tsiganov, “Addition theorems and the Drach superintegrable systems”, J. Phys. A, 41:33 (2008), 335204 | DOI | MR | Zbl

[24] Yu. A. Grigoriev and A. V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates”, Phys. Lett. A, 382:32 (2018), 2092–2096 | DOI | MR | Zbl

[25] A. V. Tsiganov, “Superintegrable systems and Riemann–Roch theorem”, J. Math. Phys., 61:1 (2020), 012701 | DOI | MR | Zbl

[26] M. Karlovini and K. Rosquist, “A unified treatment of cubic invariants at fixed and arbitrary energy”, J. Math. Phys., 41:1 (2000), 370–384 | DOI | MR | Zbl

[27] V. B. Kuznetsov, “Quadrics on real Riemannian spaces of constant curvature: Separation of variables and connection with Gaudin magnet”, J. Math. Phys., 33:9 (1992), 3240–3254 | DOI | MR | Zbl

[28] E. G. Kalnins, V. B. Kuznetsov, and W. Miller, Jr., “Quadrics on complex Riemannian spaces of constant curvature, separation of variables, and the Gaudin magnet”, J. Math. Phys., 35:4 (1994), 1710–1731 | DOI | MR | Zbl

[29] A. V. Tsiganov and E. O. Porubov, “On a class of quadratic conservation laws for Newton equations in Euclidean space”, Theoret. and Math. Phys., 216:2 (2023), 1209–1237 | DOI

[30] A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475 | DOI | MR | Zbl

[31] A. V. Tsiganov, “Two integrable systems with integrals of motion of degree four”, Theoret. and Math. Phys., 186:3 (2016), 383–394 | DOI

[32] A. V. Tsiganov, “On integrable systems outside Nijenhuis and Haantjes geometry”, J. Geom. Phys., 178 (2022), 104571 | DOI | MR | Zbl

[33] A. V. Tsiganov, “On Killing tensors in three-dimensional Euclidean space”, Theoret. and Math. Phys., 212:1 (2022), 1019–1032 | DOI