On rotation invariant integrable systems
Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 389-409

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding the first integrals of the Newton equations in the $n$-dimensional Euclidean space is reduced to that of finding two integrals of motion on the Lie algebra $\mathrm{so}(4)$ which are invariant under $m\geq n-2$ rotation symmetry fields. As an example, we obtain several families of integrable and superintegrable systems with first, second, and fourth-degree integrals of motion in the momenta. The corresponding Hamilton–Jacobi equation does not admit separation variables in any of the known curvilinear orthogonal coordinate systems in the Euclidean space.
Keywords: differential equation, first integral, symmetry field
Mots-clés : quartic invariant.
@article{IM2_2024_88_2_a9,
     author = {A. V. Tsiganov},
     title = {On rotation invariant integrable systems},
     journal = {Izvestiya. Mathematics },
     pages = {389--409},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On rotation invariant integrable systems
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 389
EP  - 409
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/
LA  - en
ID  - IM2_2024_88_2_a9
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On rotation invariant integrable systems
%J Izvestiya. Mathematics 
%D 2024
%P 389-409
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/
%G en
%F IM2_2024_88_2_a9
A. V. Tsiganov. On rotation invariant integrable systems. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 389-409. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/