On rotation invariant integrable systems
Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 389-409
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of finding the first integrals of the Newton equations in
the $n$-dimensional Euclidean space is reduced to that of finding
two integrals of motion on the Lie algebra $\mathrm{so}(4)$
which are invariant under $m\geq n-2$ rotation symmetry fields.
As an example, we obtain
several families of integrable and superintegrable systems with first,
second, and fourth-degree integrals of motion in the momenta.
The corresponding Hamilton–Jacobi equation
does not admit separation variables in any of the known curvilinear orthogonal coordinate systems
in the Euclidean space.
Keywords:
differential equation, first integral, symmetry field
Mots-clés : quartic invariant.
Mots-clés : quartic invariant.
@article{IM2_2024_88_2_a9,
author = {A. V. Tsiganov},
title = {On rotation invariant integrable systems},
journal = {Izvestiya. Mathematics },
pages = {389--409},
publisher = {mathdoc},
volume = {88},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/}
}
A. V. Tsiganov. On rotation invariant integrable systems. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 389-409. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a9/