$\theta$-metric function
Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 369-388

Voir la notice de l'article provenant de la source Math-Net.Ru

We study approximative properties of sets as a function of the rate of variation of the distance function defined in terms of some continuous functional (in lieu of a metric). As an application, we prove non-uniqueness of approximation by non-convex subsets of Hilbert spaces with respect to special continuous functionals. Results of this kind are capable of proving non-uniqueness solvability for gradient-type equations.
Keywords: asymmetric space, $\theta$-metric function, minimization of functionals, differential equation, $\theta$-metric projection.
Mots-clés : non-unique solvability
@article{IM2_2024_88_2_a8,
     author = {I. G. Tsar'kov},
     title = {$\theta$-metric function},
     journal = {Izvestiya. Mathematics },
     pages = {369--388},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a8/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - $\theta$-metric function
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 369
EP  - 388
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a8/
LA  - en
ID  - IM2_2024_88_2_a8
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T $\theta$-metric function
%J Izvestiya. Mathematics 
%D 2024
%P 369-388
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a8/
%G en
%F IM2_2024_88_2_a8
I. G. Tsar'kov. $\theta$-metric function. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 369-388. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a8/