Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_2_a7, author = {S. G. Tankeev}, title = {On the standard conjecture for a~fourfold with}, journal = {Izvestiya. Mathematics }, pages = {339--368}, publisher = {mathdoc}, volume = {88}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a7/} }
S. G. Tankeev. On the standard conjecture for a~fourfold with. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 339-368. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a7/
[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. colloq. (Tata Inst. Fund. Res., Bombay 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl
[2] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland Publishing Co., Amsterdam, 1968, 359–386 | MR | Zbl
[3] S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI
[4] S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. Math., 69:1 (2005), 143–162 | DOI
[5] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI
[6] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl
[7] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI
[8] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl
[9] F. Charles and E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl
[10] A. Grothendieck, “Modèles de Néron et monodromie”, Groupes de monodromie en géométrie algébrique, Séminaire de géométrie algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Math., 288, Springer-Verlag, Berlin–New York, 1972, Exp. No. IX, 313–523 | DOI | MR | Zbl
[11] K. Künnemann, “Height pairings for algebraic cycles on abelian varieties”, Ann. Sci. École Norm. Sup. (4), 34:4 (2001), 503–523 | DOI | MR | Zbl
[12] K. Künnemann, “Projective regular models for abelian varieties, semistable reduction, and the height pairing”, Duke Math. J., 95:1 (1998), 161–212 | DOI | MR | Zbl
[13] S. G. Tankeev, “On the standard conjecture for projective compactifications of Néron models of $3$-dimensional Abelian varieties”, Izv. Math., 85:1 (2021), 145–175 | DOI
[14] S. G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. Math., 81:6 (2017), 1253–1285 | DOI
[15] W. Schmid, “Variation of Hodge structure: the singularities of the period mapping”, Invent. Math., 22:3-4 (1973), 211–319 | DOI | MR | Zbl
[16] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl
[17] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl
[18] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl
[19] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl
[20] Yu. G. Zarkhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI
[21] B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”: J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, 297–356 | DOI | MR | Zbl
[22] B. J. J. Moonen and Yu. G. Zarhin, “Hodge classes on abelian varieties of low dimension”, Math. Ann., 315:4 (1999), 711–733 | DOI | MR | Zbl
[23] D. Mumford, Abelian varieties, Tata Inst. Fundam. Res. Stud. Math., 5, Oxford Univ. Press, London, 1970 | MR | Zbl
[24] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Ch. 1, Actualités Sci. Indust., 1285, 2nd éd., Hermann, Paris, 1971 ; Ch. 2, 3, 1349, 1972 ; Ch. 4–6, 1337, 1968 ; Ch. 7, 8, 1364, 1975 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl
[25] H. Lange and C. Birkenhake, Complex Abelian varieties, Grundlehren Math. Wiss., 302, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[26] N. Bourbaki, Éléments de mathématique. Livre II: Algèbre, Ch. 7: Modules sur les anneaux principaux, Actualités Sci. Indust., 1179, Hermann, Paris, 1952 ; Ch. 8: Modules et anneaux semi-simples, 1261, 1958 ; Ch. 9: Formes sesquilinéaires et formes quadratiques, 1272, 1959 | MR | Zbl | MR | Zbl | MR | Zbl
[27] S. G. Tankeev, “On the standard conjecture for a $3$-dimensional variety fibred by curves with a non-injective Kodaira–Spencer map”, Izv. Math., 84:5 (2020), 1016–1035 | DOI
[28] S. G. Tankeev, “On algebraic isomorphisms of rational cohomology of a Künneman compactification of the Néron minimal model”, ‘ЁЎ. н«ҐЄва®. ¬ ⥬. Ё§ў., 17 (2020), 89–125 | DOI | MR | Zbl
[29] S. G. Tankeev, “On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci”, Izv. Math., 83:3 (2019), 613–653 | DOI
[30] C. Voisin, Hodge theory and complex algebraic geometry, Transl. from the French, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002 ; v. II, 77, 2003 | DOI | MR | Zbl | DOI | MR | Zbl
[31] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 167–187 | DOI
[32] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973 | MR | Zbl
[33] R. Godement, Topologie algébrique et théorie des faisceaux, Actualités Sci. Ind., 1252, Publ. Math. Univ. Strasbourg, No. 13, Hermann, Paris, 1958 | MR | Zbl
[34] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980 | MR | Zbl
[35] G. E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York–Toronto, ON–London, 1967 | MR | Zbl
[36] A. Grothendieck, “Sur quelques points d'algèbre homologique. I”, Tohoku Math. J. (2), 9:2 (1957), 119–184 ; II:3, 185–221 | DOI | MR | Zbl | DOI
[37] B. B. Gordon, “Algebraic cycles and the Hodge structure of a Kuga fiber variety”, Trans. Amer. Math. Soc., 336:2 (1993), 933–947 | DOI | MR | Zbl
[38] K. A. Ribet, “Hodge classes on certain types of Abelian varieties”, Amer. J. Math., 105:2 (1983), 523–538 | DOI | MR | Zbl
[39] S. G. Tankeev, “Cycles on simple Abelian varieties of prime dimension”, Math. USSR-Izv., 20:1 (1983), 157–171 | DOI
[40] V. K. Murty, “Exceptional Hodge classes on certain Abelian varieties”, Math. Ann., 268:2 (1984), 197–206 | DOI | MR | Zbl
[41] F. Hazama, “Algebraic cycles on certain Abelian varieties and powers of special surfaces”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31:3 (1985), 487–520 | MR | Zbl