On the standard conjecture for a~fourfold with
Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 339-368
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the Grothendieck standard conjecture $B(X)$
of Lefschetz type holds for a smooth complex projective
4-dimensional variety $X$ provided that there exists a morphism
of $X$ onto a smooth projective curve whose generic scheme fibre
is an Abelian variety with bad semi-stable reduction
at some place of the curve.
Keywords:
Grothendieck standard conjecture of Lefschetz type, Abelian variety,
minimal Néron model, Hodge group.
@article{IM2_2024_88_2_a7,
author = {S. G. Tankeev},
title = {On the standard conjecture for a~fourfold with},
journal = {Izvestiya. Mathematics },
pages = {339--368},
publisher = {mathdoc},
volume = {88},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a7/}
}
S. G. Tankeev. On the standard conjecture for a~fourfold with. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 339-368. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a7/