Realization of arbitrary Lie algebras by automorphisms
Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 313-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any finite-dimensional real Lie algebra $\mathfrak{h}$, we construct a germ of a real analytic hypersurface in complex space such that its Lie algebra of infinitesimal holomorphic automorphisms is isomorphic to $\mathfrak{h}$. For any $\mathfrak{h}$, we also construct a system of partial differential equations whose Lie algebra of symmetries is isomorphic to the complexification of the algebra $\mathfrak{h}$.
Keywords: $\mathrm{CR}$ manifold, holomorphic automorphisms, Lie algebra, symmetries of partial differential equations.
@article{IM2_2024_88_2_a6,
     author = {M. A. Stepanova},
     title = {Realization of arbitrary {Lie} algebras by automorphisms},
     journal = {Izvestiya. Mathematics },
     pages = {313--338},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a6/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - Realization of arbitrary Lie algebras by automorphisms
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 313
EP  - 338
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a6/
LA  - en
ID  - IM2_2024_88_2_a6
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T Realization of arbitrary Lie algebras by automorphisms
%J Izvestiya. Mathematics 
%D 2024
%P 313-338
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a6/
%G en
%F IM2_2024_88_2_a6
M. A. Stepanova. Realization of arbitrary Lie algebras by automorphisms. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 313-338. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a6/

[1] H. Poincaré, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220 | DOI | Zbl

[2] V. K. Beloshapka, “Symmetries of real hypersurfaces in complex 3-space”, Math. Notes, 78:2 (2005), 156–163 | DOI

[3] A. E. Tumanov and G. B. Shabat, “Realization of linear Lie groups by biholomorphic automorphisms of bounded domains”, Funct. Anal. Appl., 24:3 (1990), 255–257 | DOI

[4] J. Winkelmann, Realizing connected Lie groups as automorphism groups of complex manifolds, arXiv: math/0204225v2

[5] É. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes. II”, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2), 1:4 (1932), 333–354 | MR | Zbl

[6] B. Segre, “Questioni geometriche legate colla teoria delle funzioni di due variabili complesse”, Rend. Sem. Mat. Roma (2), 7:2 (1932), 59–107 | Zbl

[7] H. Gaussier and J. Merker, “Symmetries of partial differential equations”, J. Korean Math. Soc., 40:3 (2003), 517–561 | DOI | MR | Zbl

[8] I. Kossovskiy and R. Shafikov, “Analytic differential equations and spherical real hypersurfaces”, J. Differential Geom., 102:1 (2016), 67–126 | DOI | MR | Zbl

[9] M. A. Stepanova, “On automorphisms of direct products of CR manifolds”, Math. Notes, 111:2 (2022), 281–288 | DOI

[10] M. Baouendi, P. Ebenfelt, and L. P. Rothschild, “CR automorphisms of real analytic manifolds in complex space”, Comm. Anal. Geom., 6:2 (1998), 291–315 | DOI | MR | Zbl

[11] A. B. Sukhov, “On transformations of analytic CR-structures”, Izv. Math., 67:2 (2003), 303–332 | DOI

[12] J. Grabowski, G. Marmo, A. Perelomov, and A. Simoni, “Remarks on Virasoro and Kac–Moody algebras”, Internat. J. Modern Phys. A, 11:28 (1996), 4969–4984 | DOI | MR | Zbl

[13] V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990 | DOI | MR | Zbl