Realization of arbitrary Lie algebras by automorphisms
Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 313-338

Voir la notice de l'article provenant de la source Math-Net.Ru

For any finite-dimensional real Lie algebra $\mathfrak{h}$, we construct a germ of a real analytic hypersurface in complex space such that its Lie algebra of infinitesimal holomorphic automorphisms is isomorphic to $\mathfrak{h}$. For any $\mathfrak{h}$, we also construct a system of partial differential equations whose Lie algebra of symmetries is isomorphic to the complexification of the algebra $\mathfrak{h}$.
Keywords: $\mathrm{CR}$ manifold, holomorphic automorphisms, Lie algebra, symmetries of partial differential equations.
@article{IM2_2024_88_2_a6,
     author = {M. A. Stepanova},
     title = {Realization of arbitrary {Lie} algebras by automorphisms},
     journal = {Izvestiya. Mathematics },
     pages = {313--338},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a6/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - Realization of arbitrary Lie algebras by automorphisms
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 313
EP  - 338
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a6/
LA  - en
ID  - IM2_2024_88_2_a6
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T Realization of arbitrary Lie algebras by automorphisms
%J Izvestiya. Mathematics 
%D 2024
%P 313-338
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a6/
%G en
%F IM2_2024_88_2_a6
M. A. Stepanova. Realization of arbitrary Lie algebras by automorphisms. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 313-338. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a6/