Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_2_a3, author = {S. L. Kuznetsov}, title = {Algorithmic complexity for theories of commutative {Kleene} algebras}, journal = {Izvestiya. Mathematics }, pages = {236--269}, publisher = {mathdoc}, volume = {88}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a3/} }
S. L. Kuznetsov. Algorithmic complexity for theories of commutative Kleene algebras. Izvestiya. Mathematics , Tome 88 (2024) no. 2, pp. 236-269. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a3/
[1] S. C. Kleene, “Representation of events in nerve nets and finite automata”, Automata studies, Ann. of Math. Stud., 34, Princeton Univ. Press, Princeton, NJ, 1956, 3–41 | DOI | MR | Zbl
[2] D. Kozen, “On Kleene algebras and closed semirings”, Mathematical foundations of computer science (Banská Bystrica 1990), Lecture Notes in Comput. Sci., 452, Springer-Verlag, Berlin, 1990, 26–47 | DOI | MR | Zbl
[3] V. Pratt, “Action logic and pure induction”, Logics in AI (Amsterdam 1990), Lecture Notes in Comput. Sci., 478, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, 1991, 97–120 | DOI | MR | Zbl
[4] V. N. Red'ko, “On the algebra of commutative events”, Ukrain. Mat. Zh., 16:2 (1964), 185–195 (Russian) | MR | Zbl
[5] R. J. Parikh, “On context-free languages”, J. Assoc. Comput. Mach., 13:4 (1966), 570–581 | DOI | MR | Zbl
[6] D. Kozen, “On the complexity of reasoning in Kleene algebra”, Inform. and Comput., 179:2 (2002), 152–162 | DOI | MR | Zbl
[7] S. L. Kuznetsov, “On the complexity of reasoning in Kleene algebra with commutativity conditions”, Theoretical aspects of computing – ICTAC 2023 (Lima 2023), Lecture Notes in Comput. Sci., 14446, Springer, Cham, 2023, 83–99 | DOI
[8] S. L. Kuznetsov, “Reasoning in commutative Kleene algebras from $*$-free hypotheses”, The Logica yearbook 2021, College Publications, London, 2022, 99–113 | MR
[9] E. Palka, “An infinitary sequent system for the equational theory of $*$-continuous action lattices”, Fund. Inform., 78:2 (2007), 295–309 | MR | Zbl
[10] W. Buszkowski and E. Palka, “Infinitary action logic: complexity, models and grammars”, Studia Logica, 89:1 (2008), 1–18 | DOI | MR | Zbl
[11] J.-Y. Girard, “Linear logic”, Theoret. Comput. Sci., 50:1 (1987), 1–101 | DOI | MR | Zbl
[12] S. L. Kuznetsov and S. O. Speranski, “Infinitary action logic with exponentiation”, Ann. Pure Appl. Logic, 173:2 (2022), 103057 | DOI | MR | Zbl
[13] S. L. Kuznetsov and S. O. Speranski, “Infinitary action logic with multiplexing”, Studia Logica, 111:2 (2023), 251–280 | DOI | MR | Zbl
[14] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar, “Decision problems for propositional linear logic”, Ann. Pure Appl. Logic, 56:1-3 (1992), 239–311 | DOI | MR | Zbl
[15] S. L. Kuznetsov, “Kleene star, subexponentials without contraction, and infinite computations”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 905–922 | DOI | MR | Zbl
[16] V. Danos, J.-B. Joinet, and H. Schellinx, “The structure of exponentials: uncovering the dynamics of linear logic proofs”, Computational logic and proof theory (Brno 1993), Lecture Notes in Comput. Sci., 713, Springer-Verlag, Berlin, 1993, 159–171 | DOI | MR | Zbl
[17] M. L. Minsky, “Recursive unsolvability of Post's problem of “tag” and other topics in theory of Turing machines”, Ann. of Math. (2), 74:3 (1961), 437–455 | DOI | MR | Zbl
[18] S. L. Kuznetsov, “Commutative action logic”, J. Logic Comput., 33:6 (2023), 1437–1462 | DOI | MR
[19] L. Straßburger, “On the decision problem for MELL”, Theor. Comput. Sci., 768 (2019), 91–98 | DOI | MR | Zbl
[20] R. Schroeppel, A two counter machine cannot calculate $2^N$, Report no. AIM-257, MIT, Cambridge, MA, 1972 https://dspace.mit.edu/handle/1721.1/6202
[21] E. Börger, Computability, complexity, logic, Stud. Logic Found. Math., 128, North-Holland Publishing Co., Amsterdam, 1989 | MR | Zbl
[22] S. C. Kleene, “Arithmetical predicates and function quantifiers”, Trans. Amer. Math. Soc., 79 (1955), 312–340 | DOI | MR | Zbl
[23] C. Spector, “Recursive well-orderings”, J. Symb. Log., 20:2 (1955), 151–163 | DOI | MR | Zbl
[24] P. Odifreddi, Classical recursion theory. The theory of functions and sets of natural numbers, Stud. Logic Found. Math., 125, North-Holland Publishing Co., Amsterdam, 1989 | MR | Zbl