Mots-clés : polynomial, Galois group.
@article{IM2_2024_88_2_a2,
author = {A. B. Kalmynin and S. V. Konyagin},
title = {A polynomial analogue of {Jacobsthal} function},
journal = {Izvestiya. Mathematics},
pages = {225--235},
year = {2024},
volume = {88},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a2/}
}
A. B. Kalmynin; S. V. Konyagin. A polynomial analogue of Jacobsthal function. Izvestiya. Mathematics, Tome 88 (2024) no. 2, pp. 225-235. http://geodesic.mathdoc.fr/item/IM2_2024_88_2_a2/
[1] K. Ford, B. Green, S. Konyagin, J. Maynard, and T. Tao, “Long gaps between primes”, J. Amer. Math. Soc., 31:1 (2018), 65–105 | DOI | MR | Zbl
[2] H. Iwaniec, “On the problem of Jacobsthal”, Demonstr. Math., 11:1 (1978), 225–231 | DOI | MR | Zbl
[3] R. A. Rankin, “The difference between consecutive prime numbers”, J. London Math. Soc., 13:4 (1938), 242–247 | DOI | MR | Zbl
[4] R. Dietmann, C. Elsholtz, A. Kalmynin, S. Konyagin, and J. Maynard, “Longer gaps between values of binary quadratic forms”, Int. Math. Res. Not. IMRN, 2023:12 (2023), 10313–10349 | DOI | MR | Zbl
[5] H. Halberstam and H.-E. Richert, Sieve methods, London Math. Soc. Monogr., 4, Academic Press, Inc., London–New York, 1974 | MR | Zbl
[6] J. C. Lagarias and A. M. Odlyzko, “Effective versions of the Chebotarev density theorem”, Algebraic number fields: L-functions and Galois properties (Univ. Durham, Durham, 1975), Academic Press, Inc., London–New York, 1977, 409–464 | MR | Zbl
[7] B. J. Birch and H. P. F. Swinnerton-Dyer, “Note on a problem of Chowla”, Acta Arith., 5 (1959), 417–423 | DOI | MR | Zbl
[8] J.-P. Serre, Topics in Galois theory, Res. Notes Math., 1, 2nd ed., A. K. Peters, Wellesley, MA, 2007 | MR | Zbl
[9] D. Hilbert, “Ueber die IrreduР±ibilität ganzer rationaler FunР±tionen mit ganzzahligen вЂ�oeffiР±ienten”, J. Reine Angew. Math., 1892:110 (1892), 104–129 | DOI | MR | Zbl