Distributions of zeros and masses of entire and
Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 133-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathrm Z$ and $\mathrm W$ be distributions of points on the complex plane $\mathbb C$. The following problem dates back to F. Carlson, T. Carleman, L. Schwartz, A. F. Leont'ev, B. Ya. Levin, J.-P. Kahane, and others. For which $\mathrm Z$ and $\mathrm W$, for an entire function $g\neq 0$ of exponential type which vanishes on $\mathrm W$, there exists an entire function $f\neq 0$ of exponential type that vanishes on $\mathrm Z$ and is such that $|f|\leqslant |g|$ on the imaginary axis? The classical Malliavin–Rubel theorem of the early 1960s completely solves this problem for “positive” $\mathrm Z$ and $\mathrm W$ (which lie only on the positive semiaxis). Several generalizations of this criterion were established by the author of the present paper in the late 1980s for “complex” $\mathrm Z \subset \mathbb C$ and $\mathrm W\subset \mathbb C$ separated by angles from the imaginary axis, with some advances in the 2020s. In this paper, we solve more involved problems in a more general subharmonic framework for distributions of masses on $\mathbb C$. All the previously mentioned results can be obtained from the main results of this paper in a much stronger form (even for the initial formulation for distributions of points $\mathrm Z$ and $\mathrm W$ and entire functions $f$ and $g$ of exponential type). Some results of the present paper are closely related to the famous Beurling–Malliavin theorems on the radius of completeness and a multiplier.
Keywords: entire function of exponential type, distribution of zeros, subharmonic function of finite type, Riesz distribution of masses
Mots-clés : balayage.
@article{IM2_2024_88_1_a7,
     author = {B. N. Khabibullin},
     title = {Distributions of zeros and masses of entire and},
     journal = {Izvestiya. Mathematics },
     pages = {133--193},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a7/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Distributions of zeros and masses of entire and
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 133
EP  - 193
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a7/
LA  - en
ID  - IM2_2024_88_1_a7
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Distributions of zeros and masses of entire and
%J Izvestiya. Mathematics 
%D 2024
%P 133-193
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a7/
%G en
%F IM2_2024_88_1_a7
B. N. Khabibullin. Distributions of zeros and masses of entire and. Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 133-193. http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a7/

[1] R. P. Boas, Jr., Entire functions, Academic Press Inc., New York, 1954 | MR | Zbl

[2] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[3] L. A. Rubel, Entire and meromorphic functions, With the assistance of J. E. Colliander, Universitext, Springer-Verlag, New York, 1996 | DOI | MR | Zbl

[4] B. N. Khabibullin, Completeness of systems of exponentials and uniqueness sets, 4th ed., Publishing Centre of Bashkir State University, Ufa, 2012 (Russian) | DOI

[5] B. Ja. Levin [B. Ya. Levin], Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl

[6] V. Havin and B. Jöricke, The uncertainty principle in harmonic analysis, Ergeb. Math. Grenzgeb. (3), 28, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[7] P. Malliavin and L. A. Rubel, “On small entire functions of exponential type with given zeros”, Bull. Soc. Math. France, 89 (1961), 175–206 | DOI | MR | Zbl

[8] Ch. O. Kiselman, “Order and type as measures of growth for convex or entire functions”, Proc. London Math. Soc. (3), 66:1 (1993), 152–186 | DOI | MR | Zbl

[9] B. N. Khabibullin and A. V. Shmeleva, “Balayage of measures and subharmonic functions on a system of rays. I. The classical case”, St. Petersburg Math. J., 31:1 (2020), 117–156 | DOI

[10] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992 | MR | Zbl

[11] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | DOI | MR | Zbl

[12] W. K. Hayman and P. B. Kennedy, Subharmonic functions, v. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976 | MR | Zbl

[13] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl

[14] V. Azarin, Growth theory of subharmonic functions, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl

[15] R. M. Redheffer, “Completeness of sets of complex exponentials”, Adv. Math., 24:1 (1977), 1–62 | DOI | MR | Zbl

[16] I. F. Krasichkov-Ternovskiĭ, “An interpretation of the Beurling–Malliavin theorem on the radius of completeness”, Math. USSR-Sb., 66:2 (1990), 405–429 | DOI

[17] B. N. Khabibullin, “Nonconstructive proofs of the Beurling–Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 125–149 | DOI

[18] A. E. Salimova, “A version of the Malliavin–Rubel theorem on entire functions of exponential type with zeros near the imaginary axis”, Russian Math. (Iz. VUZ), 66:8 (2022), 37–45 | DOI

[19] B. N. Khabibullin, “Smallness of the growth on the imaginary axis of entire functions of exponential type with given zeros”, Math. Notes, 43:5 (1988), 372–375 | DOI

[20] I. F. Krasičkov-Ternovskiĭ, “Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains”, Math. USSR-Sb., 17:1 (1972), 1–29 | DOI

[21] B. N. Khabibullin, “On the growth of entire functions of exponential type near a straight line”, Math. Notes, 70:4 (2001), 560–573 | DOI

[22] B. N. Khabibullin, “On the growth of entire functions of exponential type along the imaginary axis”, Soviet Math. Dokl., 38:2 (1989), 276–278

[23] B. N. Khabibullin, “On the growth of entire functions of exponential type along the imaginary axis”, Math. USSR-Sb., 67:1 (1990), 149–163 | DOI

[24] P. Koosis, The logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988 | DOI | MR | Zbl

[25] P. Koosis, The logarithmic integral, v. II, Cambridge Stud. Adv. Math., 21, Cambridge Univ. Press, Cambridge, 1992 | DOI | MR | Zbl

[26] P. Koosis, Leçons sur le théorème de Beurling et Malliavin, Univ. Montréal, Les Publications CRM, Montréal, QC, 1996 | MR | Zbl

[27] T. Yu. Bayguskarov, G. R. Talipova, and B. N. Khabibullin, “Subsequences of zeros for classes of entire functions of exponential type distinguished by growth restrictions”, St. Petersburg Math. J., 28:2 (2017), 127–151 | DOI

[28] B. N. Khabibullin, A. V. Shmeleva, and Z. F. Abdullina, “Balayage of measures and subharmonic functions to a system of rays. II. Balayages of finite genus and growth regularity on a single ray”, St. Petersburg Math. J., 32:1 (2021), 155–181 | DOI

[29] A. Beurling and P. Malliavin, “On Fourier transforms of measures with compact support”, Acta Math., 107:3-4 (1962), 291–309 | DOI | MR | Zbl

[30] A. Beurling and P. Malliavin, “On the closure of characters and the zeros of entire functions”, Acta Math., 118 (1967), 79–93 | DOI | MR | Zbl

[31] J.-P. Kahane, “Travaux de Beurling et Malliavin”, Séminaire Bourbaki, v. 1961/62, Soc. Math. France, Paris, 1962, Exp. No. 225, 27–39 | MR | Zbl

[32] P. Malliavin, “On the multiplier theorem for Fourier transforms of measures with compact support”, Ark. Mat., 17:1 (1979), 69–81 | DOI | MR | Zbl

[33] J. Mashreghi, F. L. Nazarov, and V. P. Havin, “Beurling–Malliavin multiplier theorem: the seventh proof”, St. Petersburg Math. J., 17:5 (2006), 699–744 | DOI

[34] B. N. Khabibullin, G. R. Talipova, and F. B. Khabibullin, “Subsequences of zeros for Bernstein spaces and the completeness of systems of exponentials in spaces of functions on an interval”, St. Petersburg Math. J., 26:2 (2015), 319–340 | DOI

[35] B. N. Khabibullin, “On the growth of the entire functions of exponential type with given zeros along a line”, Anal. Math., 17:3 (1991), 239–256 (Russian) | DOI | MR | Zbl

[36] A. E. Salimova and B. N. Khabibullin, “Growth of subharmonic functions along line and distribution of their Riesz measures”, Ufa Math. J., 12:2 (2020), 35–49 | DOI | MR

[37] A. E. Salimova and B. N. Khabibullin, “Distribution of zeros of exponential-type entire functions with constraints on growth along a line”, Math. Notes, 108:4 (2020), 579–589 | DOI

[38] A. E. Salimova and B. N. Khabibullin, “Growth of entire functions of exponential type and characteristics of points distributions along straight line in complex plane”, Ufa Math. J., 13:3 (2021), 113–125 | DOI

[39] B. N. Khabibullin, International Conference on Complex Analysis Dedicated to the Memory of Andrei Gonchar and Anatoliy Vitushkin, MathNet.ru (MIAN, Moscow 2021), 2021 http://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=32158

[40] B. N. Khabibullin, “Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions”, Sb. Math., 200:2 (2009), 283–312 | DOI

[41] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Stud., 13, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1967 | MR | Zbl

[42] C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, London–New York, 1970 | MR | Zbl

[43] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969 | MR | Zbl

[44] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl

[45] V. Ya. Èiderman, “Cartan-type estimates for potentials with Cauchy kernels and real-valued kernels”, Sb. Math., 198:8 (2007), 1175–1220 | DOI

[46] A. L. Volberg and V. Ya. Èiderman, “Non-homogeneous harmonic analysis: 16 years of development”, Russian Math. Surveys, 68:6 (2013), 973–1026 | DOI

[47] B. N. Khabibullin, “Integrals of a difference of subharmonic functions against measures and the Nevanlinna characteristic”, Sb. Math., 213:5 (2022), 694–733 | DOI

[48] B. N. Khabibullin, “Balayage on a system of rays and entire functions of completely regular growth”, Math. USSR-Izv., 38:1 (1992), 179–197 | DOI

[49] M. G. Arsove, “Functions of potential type”, Trans. Amer. Math. Soc., 75 (1953), 526–551 | DOI | MR | Zbl

[50] B. N. Khabibullin, “The logarithm of the modulus of an entire function as a minorant for a subharmonic function outside a small exceptional set”, Azerb. J. Math., 11:2 (2021), 48–59 | MR | Zbl

[51] B. N. Khabibullin and T. Yu. Baiguskarov, “The logarithm of the modulus of a holomorphic function as a minorant for a subharmonic function”, Math. Notes, 99:4 (2016), 576–589 | DOI

[52] T. Yu. Baiguskarov, B. N. Khabibullin, and A. V. Khasanova, “The logarithm of the modulus of a holomorphic function as a minorant for a subharmonic function. II. The complex plane”, Math. Notes, 101:4 (2017), 590–607 | DOI

[53] E. F. Reifenberg, “A problem on circles”, Math. Gaz., 32:302 (1948), 290–292 | DOI | MR | Zbl

[54] P. Bateman and P. Erdös, “Geometrical extrema suggested by a lemma of Besicovitch”, Amer. Math. Monthly, 58:5 (1951), 306–314 | DOI | MR | Zbl

[55] Z. Füredi and P. A. Loeb, “On the best constant for the Besicovitch covering theorem”, Proc. Amer. Math. Soc., 121:4 (1994), 1063–1073 | DOI | MR | Zbl

[56] M. de Guzmán, Differentiation of integrals in $\mathbb{R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | Zbl

[57] J. M. Sullivan, “Sphere packings give an explicit bound for the Besicovitch covering theorem”, J. Geom. Anal., 2:2 (1994), 219–230 | DOI | MR | Zbl

[58] I. I. Privalov, Subharmonic functions, Gostehizdat, Moscow, 1937 (in Russian)

[59] B. N. Khabibullin, “Completeness of systems of entire functions in spaces of holomorphic functions”, Math. Notes, 66:4 (1999), 495–506 | DOI

[60] B. N. Khabibullin, F. B. Khabibullin, and L. Yu. Cherednikova, “Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness. I”, St. Petersburg Math. J., 20:1 (2009), 101–129 ; II, 131–162 | DOI

[61] B. N. Khabibullin and A. P. Rozit, “On the distribution of zero sets of holomorphic functions”, Funct. Anal. Appl., 52:1 (2018), 21–34 | DOI

[62] B. N. Khabibullin and F. B. Khabibullin, “Zeros of holomorphic functions in the unit disk and $\rho$-trigonometrically convex functions”, Anal. Math. Phys., 9:3 (2019), 1087–1098 | DOI | MR | Zbl

[63] B. N. Khabibullin and F. B. Khabibullin, “On the distribution of zero sets of holomorphic functions. III. Converse theorems”, Funct. Anal. Appl., 53:2 (2019), 110–123 | DOI

[64] E. B. Menshikova and B. N. Khabibullin, “A criterion for the sequence of roots of holomorphic function with restrictions on its growth”, Russian Math. (Iz. VUZ), 64:5 (2020), 49–55 | DOI

[65] B. N. Khabibullin and F. B. Khabibullin, “Necessary and sufficient conditions for zero subsets of holomorphic functions with upper constraints in planar domains”, Lobachevskii J. Math., 42:4 (2021), 800–810 | DOI | MR | Zbl

[66] B. N. Khabibullin, A. P. Rozit, and E. B. Khabibullina, “Order versions of the Hahn–Banach theorem and envelopes. II. Applications to the function theory”, J. Math. Sci. (N.Y.), 257:3 (2021), 366–409 | DOI

[67] B. N. Khabibullin, Envelopes in theory of functions, Publishing Centre of Bashkir State University, Ufa, 2021 (in Russian)