Interpolating asymptotic integration methods
Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 114-132

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of asymptotic behaviour at infinity of solutions to second-order differential equation can be reduced via the Liouville transform to that of an equation with almost constant coefficients. In the present paper, we compare various methods of asymptotic integration in application to the reduced equation $u''-(\lambda^2+\varphi(t))u=0$ and interpolate the corresponding results in the case $\operatorname{Re}\lambda>0$, provided that a complex-valued function $\varphi(t)$ is in a certain sense small for large values of the argument.
Keywords: asymptotic integration, retraction principle, Lyapunov type function.
Mots-clés : comparison equation
@article{IM2_2024_88_1_a6,
     author = {S. A. Stepin},
     title = {Interpolating asymptotic integration methods},
     journal = {Izvestiya. Mathematics },
     pages = {114--132},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a6/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Interpolating asymptotic integration methods
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 114
EP  - 132
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a6/
LA  - en
ID  - IM2_2024_88_1_a6
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Interpolating asymptotic integration methods
%J Izvestiya. Mathematics 
%D 2024
%P 114-132
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a6/
%G en
%F IM2_2024_88_1_a6
S. A. Stepin. Interpolating asymptotic integration methods. Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 114-132. http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a6/