Interpolating asymptotic integration methods
Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 114-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of asymptotic behaviour at infinity of solutions to second-order differential equation can be reduced via the Liouville transform to that of an equation with almost constant coefficients. In the present paper, we compare various methods of asymptotic integration in application to the reduced equation $u''-(\lambda^2+\varphi(t))u=0$ and interpolate the corresponding results in the case $\operatorname{Re}\lambda>0$, provided that a complex-valued function $\varphi(t)$ is in a certain sense small for large values of the argument.
Keywords: asymptotic integration, retraction principle, Lyapunov type function.
Mots-clés : comparison equation
@article{IM2_2024_88_1_a6,
     author = {S. A. Stepin},
     title = {Interpolating asymptotic integration methods},
     journal = {Izvestiya. Mathematics },
     pages = {114--132},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a6/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Interpolating asymptotic integration methods
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 114
EP  - 132
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a6/
LA  - en
ID  - IM2_2024_88_1_a6
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Interpolating asymptotic integration methods
%J Izvestiya. Mathematics 
%D 2024
%P 114-132
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a6/
%G en
%F IM2_2024_88_1_a6
S. A. Stepin. Interpolating asymptotic integration methods. Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 114-132. http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a6/

[1] M. V. Fedoryuk, Asymptotic analysis. Linear ordinary differential equations, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl

[2] J. Heading, An introduction to phase-integral methods, Methuen Co., Ltd., London; John Wiley Sons, Inc., New York, 1962 | MR | Zbl

[3] S. A. Stepin, “The WKB method and dichotomy for ordinary differential equations”, Dokl. Math., 72:2 (2005), 783–786

[4] R. Bellman, Stability theory of differential equations, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953 | MR | Zbl

[5] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964 | MR | Zbl

[6] W. A. Harris, Jr., and D. A. Lutz, “A unified theory of asymptotic integration”, J. Math. Anal. Appl., 57:3 (1977), 571–586 | DOI | MR | Zbl

[7] W. F. Trench, “Linear perturbations of a nonoscillatory second-order equation”, Proc. Amer. Math. Soc., 97:3 (1986), 423–428 | DOI | MR | Zbl

[8] J. Šimša, “Asymptotic integration of a second order ordinary differential equation”, Proc. Amer. Math. Soc., 101:1 (1987), 96–100 | DOI | MR | Zbl

[9] Shao Zhu Chen, “Asymptotic integrations of nonoscillatory second order ordinary differential equations”, Trans. Amer. Math. Soc., 327:2 (1991), 853–865 | DOI | MR | Zbl

[10] S. Bodine and D. A. Lutz, “Asymptotic integration of nonoscillatory differential equations: a unified approach”, J. Dyn. Control Syst., 17:3 (2011), 329–358 | DOI | MR | Zbl

[11] S. A. Stepin, “Interpolation in the asymptotic integration of nonoscillatory differential equations”, Dokl. Math., 85:2 (2012), 174–177 | DOI | Zbl

[12] V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl

[13] L. A. Lusternik and V. J. Sobolev, Elements of functional analysis, Internat. Monogr. Adv. Math. Phys., Hindustan Publishing Corp., Delhi; Halsted Press [John Wiley Sons, Inc.], New York, 1974 | MR | Zbl

[14] S. A. Stepin, “Asymptotic integration of nonoscillatory second-order differential equations”, Dokl. Math., 82:2 (2010), 751–754 | DOI | Zbl

[15] S. Bodine and D. A. Lutz, “Asymptotic solutions and error estimates for linear systems of difference and differential equations”, J. Math. Anal. Appl., 290:1 (2004), 343–362 | DOI | MR | Zbl