Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_1_a3, author = {V. G. Zvyagin and V. P. Orlov}, title = {On weak solvability of fractional models of viscoelastic high order fluid}, journal = {Izvestiya. Mathematics }, pages = {54--76}, publisher = {mathdoc}, volume = {88}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a3/} }
V. G. Zvyagin; V. P. Orlov. On weak solvability of fractional models of viscoelastic high order fluid. Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 54-76. http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a3/
[1] I. Gyarmati, Non-equilibrium thermodynamics. Field theory and variational principles, Springer, Berlin–Heidelberg, 1970 | DOI
[2] A. P. Oskolkov, “Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids”, Proc. Steklov Inst. Math., 179 (1989), 137–182
[3] F. Mainardi and G. Spada, “Creep, relaxation and viscosity properties for basic fractional models in rheology”, Eur. Phys. J. Spec. Top., 193 (2011), 133–160 | DOI
[4] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques, 21, Dunod, Paris, 1972 | MR | Zbl
[5] J. G. Oldroyd, “Non-linear stress, rate of strain relations at finite rates of shear in so-called “linear” elastico-viscous liquids”, Second order effects in elasticity, plasticity and fluid dynamics (Haifa 1962), Jerusalem Academic Press, London, 1964, 520–529 | MR | Zbl
[6] D. R. Bland, The theory of linear viscoelasticity, Internat. Ser. Monogr. Pure Appl. Math., 10, Pergamon Press, New York–London–Oxford–Paris, 1960 | MR | Zbl
[7] G. V. Vinogradov and A. Ya. Malkin, Rheology of polymers, Springer, Berlin, 1980
[8] W. L. Wilkinson, Non-Newtonian fluids. Fluid mechanics, mixing and heat transfer, Internat. Ser. Monogr. Chem. Eng., 1, Pergamon Press, New York–London–Oxford–Paris, 1960 | MR
[9] V. G. Zvyagin and M. V. Turbin, Mathematical problems in viscoelastic hydrodynamics, Krasand, Moscow, 2012 (Russian)
[10] A. P. Oskolkov, “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids”, J. Soviet Math., 10:2 (1978), 299–335 | DOI
[11] A. P. Oskolkov, On nonstationary flows of viscoelastic liquids, LOMI Preprint ђ-3-80, Leningrad, 1980 (Russian)
[12] A. P. Oskolkov, “Certain model nonstationary systems in the theory of non-Newtonian fluids. IV”, J. Soviet Math., 25:1 (1984), 902–917 | DOI
[13] N. A. Karazeeva, A. A. Cotsiolis, and A. P. Oskolkov, “On dynamical systems generated by initial-boundary value problems for the equations of motion of linear viscoelastic fluids”, Proc. Steklov Inst. Math., 188 (1991), 73–108
[14] Yu. Ya. Agranovich and P. E. Sobolevskii, “Investigation of a mathematical model of a viscoelastic fluid”, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 10 (1989), 3–6 (Russian) | MR | Zbl
[15] Yu. Ya. Agranovich and P. E. Sobolevskii, “Motion of nonlinear visco-elastic fluid”, Nonlinear Anal., 32:6 (1998), 755–760 | DOI | MR | Zbl
[16] J. G. Oldroyd, “Non-Newtonian flow of liquids and solids”, Rheology: theory and applications, v. 1, Academic Press, Inc., New York, 1956, 653–682 | DOI | MR | Zbl
[17] V. G. Litvinov, On operator equations describing flows of nonlinearly viscous fluid, Preprint no. 88.46, Math. Inst. AN USSR, Kiev, 1988 (Russian) | MR
[18] V. P. Orlova and P. E. Sobolevskii, “On mathematical models of a viscoelasticity with a memory”, Differential Integral Equations, 4:1 (1991), 103–115 | DOI | MR | Zbl
[19] V. G. Zvyagin and V. T. Dmitrienko, “On weak solutions of a regularized model of a viscoelastic fluid”, Differ. Equ., 38:12 (2002), 1731–1744 | DOI
[20] V. P. Orlov, “On the strong solutions of a regularized model of a nonlinear visco-elastic medium”, Math. Notes, 84:2 (2008), 224–238 | DOI
[21] V. G. Zvyagin and V. P. Orlov, “Solvability of one non-Newtonian fluid dynamics model with memory”, Nonlinear Anal., 172 (2018), 73–98 | DOI | MR | Zbl
[22] V. Zvyagin and V. Orlov, “Weak solvability of fractional Voigt model of viscoelasticity”, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI | MR | Zbl
[23] V. Zvyagin and V. Orlov, “On one problem of viscoelastic fluid dynamics with memory on an infinite time interval”, Discrete Contin. Dyn. Syst. Ser. B, 23:9 (2018), 3855–3877 | DOI | MR | Zbl
[24] V. G. Zvyagin and D. A. Vorotnikov, Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, De Gruyter Ser. Nonlinear Anal. Appl., 12, Walter de Gruyter Co., Berlin, 2008 | DOI | MR | Zbl
[25] Haitao Qi and Mingyu Xu, “Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel”, Mech. Res. Comm., 34:2 (2007), 210–212 | DOI | Zbl
[26] D. Tripathi, “Peristaltic flow of a fractional second grade fluid through a cylindrical tube”, Thermal Sci., 15:suppl. 2 (2011), 167–173 | DOI
[27] D. Tripathi and O. A. Bég, “Peristaltic propulsion of generalized Burgers' fluids through a non-uniform porous medium: a study of chyme dynamics through the diseased intestine”, Math. Biosci., 248 (2014), 67–77 | DOI | MR | Zbl
[28] M. Hameed, A. A. Khan, R. Ellahi, and M. Raza, “Study of magnetic and heat transfer on the peristaltic transport of a fractional second grade fluid in a vertical tube”, Eng. Sci. Technol. Int. J., 18:3 (2015), 496–502 | DOI
[29] V. P. Rathod and A. Tuljappa, “Peristaltic flow of fractional second grade fluid through a cylindrical tube with heat transfer”, J. Chem. Biol. Phys. Sci., 5 (2015), 1841–1855
[30] V. G. Zvyagin and V. P. Orlov, “On regularity of weak solutions to a generalized Voigt model of viscoelasticity”, Comput. Math. Math. Phys., 60:11 (2020), 1872–1888 | DOI | MR
[31] V. G. Zvyagin and V. P. Orlov, “Weak solvability of one viscoelastic fractional dynamics model of continuum with memory”, J. Math. Fluid Mech., 23:1 (2021), 9 | DOI | MR | Zbl
[32] V. G. Zvyagin and V. P. Orlov, “On solvability of an initial-boundary value problem for a viscoelasticity model with fractional derivatives”, Siberian Math. J., 59:6 (2018), 1073–1089 | DOI
[33] A. V. Zvyagin, “Investigation of the weak solubility of the fractional Voigt alpha-model”, Izv. Math., 85:1 (2021), 61–91 | DOI
[34] V. G. Zvyagin and V. P. Orlov, “Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation”, Russian Math. Surveys, 77:4 (2022), 753–755 | DOI
[35] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, 2nd rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979 | MR | Zbl
[36] V. A. Kondrat'ev and O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI
[37] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach Sci. Publ., Yverdon, 1993 | MR | Zbl
[38] L. Ambrosio, “Transport equation and Cauchy problem for $BV$ vector fields”, Invent. Math., 158:2 (2004), 227–260 | DOI | MR | Zbl
[39] G. Crippa and C. de Lellis, “Estimates and regularity results for the DiPerna–Lions flow”, J. Reine Angew. Math., 2008:616 (2008), 15–46 | DOI | MR | Zbl
[40] R. J. DiPerna and P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[41] G. Crippa, “The ordinary differential equation with non-Lipschitz vector fields”, Boll. Unione Mat. Ital. (9), 1:2 (2008), 333–348 | MR | Zbl
[42] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Math. Appl., 2, 2nd eng. ed., rev. and enlarged, Gordon and Breach Sci. Publ., New York–London–Paris, 1969 | MR | Zbl
[43] L. A. Lyusternik and V. I. Sobolev, Elements of functional analysis, Ungar, New York, 1961