Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields
Izvestiya. Mathematics, Tome 88 (2024) no. 1, pp. 43-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we investigate the ground states for the fractional Choquard equations with doubly critical exponents and magnetic fields. We prove that the equation has a ground state solution by using the Nehari method and the Pokhozhaev identity.
Keywords: magnetic fields, doubly critical exponents, Nehari method, Pokhozhaev identity.
Mots-clés : fractional Choquard equation
@article{IM2_2024_88_1_a2,
     author = {Zhenyu Guo and Lujuan Zhao},
     title = {Ground states for fractional {Choquard} equations with doubly critical exponents and magnetic fields},
     journal = {Izvestiya. Mathematics},
     pages = {43--53},
     year = {2024},
     volume = {88},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a2/}
}
TY  - JOUR
AU  - Zhenyu Guo
AU  - Lujuan Zhao
TI  - Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields
JO  - Izvestiya. Mathematics
PY  - 2024
SP  - 43
EP  - 53
VL  - 88
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a2/
LA  - en
ID  - IM2_2024_88_1_a2
ER  - 
%0 Journal Article
%A Zhenyu Guo
%A Lujuan Zhao
%T Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields
%J Izvestiya. Mathematics
%D 2024
%P 43-53
%V 88
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a2/
%G en
%F IM2_2024_88_1_a2
Zhenyu Guo; Lujuan Zhao. Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields. Izvestiya. Mathematics, Tome 88 (2024) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a2/

[1] P. d'Avenia and M. Squassina, “Ground states for fractional magnetic operators”, ESAIM Control Optim. Calc. Var., 24:1 (2018), 1–24 | DOI | MR | Zbl

[2] T. Ichinose and H. Tamura, “Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field”, Comm. Math. Phys., 105:2 (1986), 239–257 | DOI | MR | Zbl

[3] Li Ma and Lin Zhao, “Classification of positive solitary solutions of the nonlinear Choquard equation”, Arch. Ration. Mech. Anal., 195:2 (2010), 455–467 | DOI | MR | Zbl

[4] V. Moroz and J. Van Schaftingen, “Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics”, J. Funct. Anal., 265:2 (2013), 153–184 | DOI | MR | Zbl

[5] P. d'Avenia, G. Siciliano, and M. Squassina, “On fractional Choquard equations”, Math. Models Methods Appl. Sci., 25:8 (2015), 1447–1476 | DOI | MR | Zbl

[6] Jinmyoung Seok, “Nonlinear Choquard equations: doubly critical case”, Appl. Math. Lett., 76 (2018), 148–156 | DOI | MR | Zbl

[7] Yu Su, Li Wang, Haibo Chen, and Senli Liu, “Multiplicity and concentration results for fractional Choquard equations: doubly critical case”, Nonlinear Anal., 198 (2020), 111872 | DOI | MR | Zbl

[8] Chun-Yu Lei and Binlin Zhang, “Ground state solutions for nonlinear Choquard equations with doubly critical exponents”, Appl. Math. Lett., 125 (2022), 107715 | DOI | MR | Zbl

[9] E. H. Lieb and M. P. Loss, Analysis, Grad. Stud. Math., 14, 2nd ed., Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[10] Zifei Shen, Fashun Gao, and Minbo Yang, Groundstates for nonlinear fractional Choquard equations with general nonlinearities, 2014, arXiv: 1412.3184

[11] A. Szulkin and T. Weth, “The method of Nehari manifold”, Handbook of nonconvex analysis and applications, Int. Press, Somerville, MA, 2010, 597–632 | MR | Zbl

[12] M. Willem, Minimax theorems, Progr. Nonlinear Differential Equations Appl., 24, Birkhäuser Boston, Inc., Boston, MA, 1996 | DOI | MR | Zbl