On unconditionality of fractional Rademacher chaos in symmetric spaces
Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 1-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We study density estimates of an index set $\mathcal{A}$ under which the unconditionality (or even the weaker property of random unconditional divergence) of the corresponding Rademacher fractional chaos $\{r_{j_1}(t) \cdot r_{j_2}(t) \cdots r_{j_d}(t)\}_{(j_1,j_2,\dots,j_d) \in \mathcal{A}}$ in a symmetric space $X$ implies its equivalence in $X$ to the canonical basis in $\ell_2$. In the special case of Orlicz spaces $L_M$, unconditionality of this system is also shown to be equivalent to the fact that a certain exponential Orlicz space embeds into $L_M$.
Keywords: Rademacher functions, Rademacher chaos, symmetric space, combinatorial dimension, unconditional convergence.
@article{IM2_2024_88_1_a0,
     author = {S. V. Astashkin and K. V. Lykov},
     title = {On unconditionality of fractional {Rademacher} chaos in symmetric spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1--17},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - K. V. Lykov
TI  - On unconditionality of fractional Rademacher chaos in symmetric spaces
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1
EP  - 17
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a0/
LA  - en
ID  - IM2_2024_88_1_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A K. V. Lykov
%T On unconditionality of fractional Rademacher chaos in symmetric spaces
%J Izvestiya. Mathematics 
%D 2024
%P 1-17
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a0/
%G en
%F IM2_2024_88_1_a0
S. V. Astashkin; K. V. Lykov. On unconditionality of fractional Rademacher chaos in symmetric spaces. Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a0/