On unconditionality of fractional Rademacher chaos in symmetric spaces
Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study density estimates of an index set $\mathcal{A}$ under which the unconditionality (or even the weaker property of random unconditional divergence) of the corresponding Rademacher fractional chaos $\{r_{j_1}(t) \cdot r_{j_2}(t) \cdots r_{j_d}(t)\}_{(j_1,j_2,\dots,j_d) \in \mathcal{A}}$ in a symmetric space $X$ implies its equivalence in $X$ to the canonical basis in $\ell_2$. In the special case of Orlicz spaces $L_M$, unconditionality of this system is also shown to be equivalent to the fact that a certain exponential Orlicz space embeds into $L_M$.
Keywords: Rademacher functions, Rademacher chaos, symmetric space, combinatorial dimension, unconditional convergence.
@article{IM2_2024_88_1_a0,
     author = {S. V. Astashkin and K. V. Lykov},
     title = {On unconditionality of fractional {Rademacher} chaos in symmetric spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1--17},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - K. V. Lykov
TI  - On unconditionality of fractional Rademacher chaos in symmetric spaces
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 1
EP  - 17
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a0/
LA  - en
ID  - IM2_2024_88_1_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A K. V. Lykov
%T On unconditionality of fractional Rademacher chaos in symmetric spaces
%J Izvestiya. Mathematics 
%D 2024
%P 1-17
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a0/
%G en
%F IM2_2024_88_1_a0
S. V. Astashkin; K. V. Lykov. On unconditionality of fractional Rademacher chaos in symmetric spaces. Izvestiya. Mathematics , Tome 88 (2024) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_2024_88_1_a0/

[1] A. Khintchine, “Über dyadische Brüche”, Math. Z., 18:1 (1923), 109–116 | DOI | MR | Zbl

[2] S. V. Astashkin, The Rademacher system in function spaces, Birkhäuser/Springer, Cham, 2020 | DOI | MR | Zbl

[3] U. Haagerup, “The best constants in the Khintchine inequality”, Studia Math., 70:3 (1981), 231–283 | DOI | MR | Zbl

[4] S. J. Szarek, “On the best constants in the Khinchin inequality”, Studia Math., 58:2 (1976), 197–208 | DOI | MR | Zbl

[5] G. Peshkir and A. N. Shiryaev, “The Khintchine inequalities and martingale expanding sphere of their action”, Russian Math. Surveys, 50:5 (1995), 849–904 | DOI

[6] V. A. Rodin and E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl

[7] S. V. Astashkin, “Rademacher chaos in symmetric spaces”, East J. Approx., 4:3 (1998), 311–336 | MR | Zbl

[8] S. V. Astashkin, “Rademacher chaos in symmetric spaces. II”, East J. Approx., 6:1 (2000), 71–86 | MR | Zbl

[9] S. V. Astashkin and K. V. Lykov, “Sparse Rademacher chaos in symmetric spaces”, St. Petersburg Math. J., 28:1 (2017), 1–20 | DOI

[10] R. C. Blei, “Fractional Cartesian products of sets”, Ann. Inst. Fourier (Grenoble), 29:2 (1979), 79–105 | DOI | MR | Zbl

[11] R. Blei, “Combinatorial dimension and certain norms in harmonic analysis”, Amer. J. Math., 106:4 (1984), 847–887 | DOI | MR | Zbl

[12] R. C. Blei and T. W. Körner, “Combinatorial dimension and random sets”, Israel J. Math., 47:1 (1984), 65–74 | DOI | MR | Zbl

[13] R. Blei, Analysis in integer and fractional dimensions, Cambridge Stud. Adv. Math., 71, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR | Zbl

[14] R. Blei and S. Janson, “Rademacher chaos: tail estimates versus limit theorems”, Ark. Mat., 42:1 (2004), 13–29 | DOI | MR | Zbl

[15] R. Blei and Lin Ge, “Relationships between combinatorial measurements and Orlicz norms”, J. Funct. Anal., 257:3 (2009), 683–720 | DOI | MR | Zbl

[16] R. Blei and Lin Ge, “Relationships between combinatorial measurements and Orlicz norms. II”, J. Funct. Anal., 257:12 (2009), 3949–3967 | DOI | MR | Zbl

[17] S. G. Kreĭn, Ju. I. Petunin, and E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982 | MR | Zbl

[18] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[19] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl

[20] P. G. Matukhin and E. I. Ostrovskii, “Nonparametric density estimation by results of multifactor testing”, Theory Probab. Appl., 35:1 (1990), 75–86 | DOI

[21] B. Jawerth and M. Milman, “New results and applications of extrapolation theory”, Interpolation spaces and related topics (Haifa 1990), Israel Math. Conf. Proc., 5, Bar-Ilan Univ., Ramat Gan, 1992, 81–105 | MR | Zbl

[22] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961 | MR | Zbl

[23] G. G. Lorentz, “Relations between function spaces”, Proc. Amer. Math. Soc., 12:1 (1961), 127–132 | DOI | MR | Zbl

[24] Ya. B. Rutitskii, “On some classes of measurable functions”, Uspekhi Mat. Nauk, 20:4(124) (1965), 205–208

[25] F. Albiac and N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006 | DOI | MR | Zbl

[26] B. S. Kashin and A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | DOI | MR | Zbl

[27] M. Sh. Braverman, Independent random variables and rearrangement invariant spaces, London Math. Soc. Lecture Note Ser., 194, Cambridge Univ. Press, Cambridge, 1994 | DOI | MR | Zbl

[28] P. Billard, S. Kwapién, A. Pełczynski, and Ch. Samuel, “Biorthogonal systems of random unconditional convergence in Banach spaces”, Texas functional analysis seminar 1985–1986 (Austin, TX 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 13–35 | MR | Zbl

[29] P. Wojtaszczyk, “Every separable Banach space containing $c_0$ has a RUC system”, Texas functional analysis seminar 1985–1986 (Austin, TX 1985–1986), Longhorn Notes, Univ. Texas, Austin, TX, 1986, 37–39 | MR | Zbl

[30] D. J. H. Garling and N. Tomczak-Jaegermann, “RUC-systems and Besselian systems in Banach spaces”, Math. Proc. Cambridge Philos. Soc., 106:1 (1989), 163–168 | DOI | MR | Zbl

[31] P. G. Dodds, E. M. Semenov, and F. A. Sukochev, “RUC systems in rearrangement invariant spaces”, Studia Math., 151:2 (2002), 161–173 | DOI | MR | Zbl

[32] J. Lopez-Abad and P. Tradacete, “Bases of random unconditional convergence in Banach spaces”, Trans. Amer. Math. Soc., 368:12 (2016), 9001–9032 | DOI | MR | Zbl

[33] S. V. Astashkin, G. P. Curbera, and K. E. Tikhomirov, “On the existence of RUC systems in rearrangement invariant spaces”, Math. Nachr., 289:2-3 (2016), 175–186 | DOI | MR | Zbl

[34] S. V. Astashkin and G. P. Curbera, “Random unconditional convergence and divergence in Banach spaces close to $L^1$”, Rev. Mat. Complut., 31:2 (2018), 351–377 | DOI | MR | Zbl

[35] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016 | DOI | MR | Zbl

[36] A. Zygmund, Trigonometric series, v. I, Cambridge Math. Lib., 2nd ed., Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl