Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_6_a6, author = {Zhuoke Yang}, title = {New approaches to $\mathfrak{gl}_N$ weight system}, journal = {Izvestiya. Mathematics }, pages = {1255--1270}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a6/} }
Zhuoke Yang. New approaches to $\mathfrak{gl}_N$ weight system. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1255-1270. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a6/
[1] S. V. Chmutov and A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $sl_2$”, Topology, 36:1 (1997), 153–178 | DOI | MR | Zbl
[2] P. A. Filippova, “Values of the $\mathfrak{sl}_2$ weight system on complete bipartite graphs”, Funct. Anal. Appl., 54:3 (2020), 208–223 | DOI
[3] P. A. Filippova, “Values of the $\mathfrak{sl}_2$ weight system on a family of graphs that are not the intersection graphs of chord diagrams”, Sb. Math., 213:2 (2022), 235–267 | DOI
[4] P. E. Zakorko, “Values of the $\mathfrak{sl}_2$ weight system on the chord diagrams whose intersection graphs are complete graphs.”, Mat. Sb., 214:7 (2023), 42–59 | DOI
[5] Zhuoke Yang, On values of $\mathfrak{sl}_3$ weight system on chord diagrams whose intersection graph is complete bipartite, arXiv: 2102.00888
[6] J. M. Figueroa-O'Farrill, T. Kimura, and A. Vaintrob, “The universal Vassiliev invariant for the Lie superalgebra ${gl}(1|1)$”, Comm. Math. Phys., 185:1 (1997), 93–127 | DOI | MR | Zbl
[7] S. V. Chmutov and S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598 | DOI | MR | Zbl
[8] S. Chmutov and S. Duzhin, “A lower bound for the number of Vassiliev knot invariants”, Topology Appl., 92:3 (1999), 201–223 | DOI | MR | Zbl
[9] O. T. Dasbach, “On the combinatorial structure of primitive Vassiliev invariants. III. A lower bound”, Commun. Contemp. Math., 2:4 (2000), 579–590 | DOI | MR | Zbl
[10] S. Chmutov, S. Duzhin, and J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012 | DOI | MR | Zbl
[11] M. E. Kazarian and S. K. Lando, “Weight systems and invariants of graphs and embedded graphs”, Russian Math. Surveys, 77:5 (2022), 893–942 | DOI
[12] Zhuoke Yang, “On the Lie superalgebra $\mathfrak{gl}(m|n)$ weight system”, J. Geom. Phys., 187 (2023), 104808 | DOI | MR | Zbl
[13] M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150 | DOI | MR | Zbl
[14] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl
[15] D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973 | DOI | MR | Zbl
[16] A. Okounkov and G. Olshanskii, “Shifted Schur functions”, St. Petersburg Math. J., 9:2 (1998), 239–300
[17] A. M. Perelomov and V. S. Popov, “Casimir operators for semisimple Lie groups”, Math. USSR-Izv., 2:6 (1968), 1313–1335 | DOI
[18] G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66 | DOI | MR | Zbl
[19] S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121 | DOI | MR | Zbl
[20] W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330 | DOI | MR | Zbl