New approaches to $\mathfrak{gl}_N$ weight system
Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1255-1270.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper has been motivated by an aspiration for understanding the weight system corresponding to the Lie algebra $\mathfrak{gl}_N$. The straightforward approach to computing the values of a Lie algebra weight system on a general chord diagram amounts to elaborating calculations in the non-commutative universal enveloping algebra, in spite of the fact that the result belongs to the centre of the latter. The first approach is based on M. Kazarian's proposal to define an invariant of permutations taking values in the centre of the universal enveloping algebra of $\mathfrak{gl}_N$. The restriction of this invariant to involutions without fixed points (such an involution determines a chord diagram) coincides with the value of the $\mathfrak{gl}_N$ weight system on this chord diagram. We describe the recursion allowing one to compute the $\mathfrak{gl}_N$ invariant of permutations and demonstrate how it works in a number of examples. The second approach is based on the Harish-Chandra isomorphism for the Lie algebras $\mathfrak{gl}_N$. This isomorphism identifies the centre of the universal enveloping algebra $\mathfrak{gl}_N$ with the ring $\Lambda^*(N)$ of shifted symmetric polynomials in N variables. The Harish-Chandra projection can be applied separately for each monomial in the defining polynomial of the weight system; as a result, the main body of computations can be done in a commutative algebra, rather than non-commutative one.
Keywords: weight system, chord diagram.
Mots-clés : finite type invariants
@article{IM2_2023_87_6_a6,
     author = {Zhuoke Yang},
     title = {New approaches to $\mathfrak{gl}_N$ weight system},
     journal = {Izvestiya. Mathematics },
     pages = {1255--1270},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a6/}
}
TY  - JOUR
AU  - Zhuoke Yang
TI  - New approaches to $\mathfrak{gl}_N$ weight system
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1255
EP  - 1270
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a6/
LA  - en
ID  - IM2_2023_87_6_a6
ER  - 
%0 Journal Article
%A Zhuoke Yang
%T New approaches to $\mathfrak{gl}_N$ weight system
%J Izvestiya. Mathematics 
%D 2023
%P 1255-1270
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a6/
%G en
%F IM2_2023_87_6_a6
Zhuoke Yang. New approaches to $\mathfrak{gl}_N$ weight system. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1255-1270. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a6/

[1] S. V. Chmutov and A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $sl_2$”, Topology, 36:1 (1997), 153–178 | DOI | MR | Zbl

[2] P. A. Filippova, “Values of the $\mathfrak{sl}_2$ weight system on complete bipartite graphs”, Funct. Anal. Appl., 54:3 (2020), 208–223 | DOI

[3] P. A. Filippova, “Values of the $\mathfrak{sl}_2$ weight system on a family of graphs that are not the intersection graphs of chord diagrams”, Sb. Math., 213:2 (2022), 235–267 | DOI

[4] P. E. Zakorko, “Values of the $\mathfrak{sl}_2$ weight system on the chord diagrams whose intersection graphs are complete graphs.”, Mat. Sb., 214:7 (2023), 42–59 | DOI

[5] Zhuoke Yang, On values of $\mathfrak{sl}_3$ weight system on chord diagrams whose intersection graph is complete bipartite, arXiv: 2102.00888

[6] J. M. Figueroa-O'Farrill, T. Kimura, and A. Vaintrob, “The universal Vassiliev invariant for the Lie superalgebra ${gl}(1|1)$”, Comm. Math. Phys., 185:1 (1997), 93–127 | DOI | MR | Zbl

[7] S. V. Chmutov and S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598 | DOI | MR | Zbl

[8] S. Chmutov and S. Duzhin, “A lower bound for the number of Vassiliev knot invariants”, Topology Appl., 92:3 (1999), 201–223 | DOI | MR | Zbl

[9] O. T. Dasbach, “On the combinatorial structure of primitive Vassiliev invariants. III. A lower bound”, Commun. Contemp. Math., 2:4 (2000), 579–590 | DOI | MR | Zbl

[10] S. Chmutov, S. Duzhin, and J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012 | DOI | MR | Zbl

[11] M. E. Kazarian and S. K. Lando, “Weight systems and invariants of graphs and embedded graphs”, Russian Math. Surveys, 77:5 (2022), 893–942 | DOI

[12] Zhuoke Yang, “On the Lie superalgebra $\mathfrak{gl}(m|n)$ weight system”, J. Geom. Phys., 187 (2023), 104808 | DOI | MR | Zbl

[13] M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150 | DOI | MR | Zbl

[14] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl

[15] D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973 | DOI | MR | Zbl

[16] A. Okounkov and G. Olshanskii, “Shifted Schur functions”, St. Petersburg Math. J., 9:2 (1998), 239–300

[17] A. M. Perelomov and V. S. Popov, “Casimir operators for semisimple Lie groups”, Math. USSR-Izv., 2:6 (1968), 1313–1335 | DOI

[18] G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66 | DOI | MR | Zbl

[19] S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121 | DOI | MR | Zbl

[20] W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330 | DOI | MR | Zbl