A~method for solution of a~mixed boundary value problem for a~hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$
Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1227-1254.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mixed boundary value problem with arbitrary continuous, not necessarily satisfying boundary conditions, functions in initial conditions and inhomogeneities of the equation is solved. A method is proposed for finding a generalized solution by a modification of the interpolation operators of functions constructed from solutions of Cauchy problems with second-order differential expression. Methods of finding the Fourier coefficients of auxiliary functions using the Stieltjes integral or the resolvent of the third-order Cauchy differential operator are proposed.
Keywords: boundary value problem, generalized solution, method of separation of variables.
@article{IM2_2023_87_6_a5,
     author = {A. Yu. Trynin},
     title = {A~method for solution of a~mixed boundary value problem for a~hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$},
     journal = {Izvestiya. Mathematics },
     pages = {1227--1254},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a5/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - A~method for solution of a~mixed boundary value problem for a~hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1227
EP  - 1254
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a5/
LA  - en
ID  - IM2_2023_87_6_a5
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T A~method for solution of a~mixed boundary value problem for a~hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$
%J Izvestiya. Mathematics 
%D 2023
%P 1227-1254
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a5/
%G en
%F IM2_2023_87_6_a5
A. Yu. Trynin. A~method for solution of a~mixed boundary value problem for a~hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1227-1254. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a5/

[1] S. L. Sobolev, Partial differential equations of mathematical physics, Pergamon Press, Oxford–Edinburgh–New York–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1964 | DOI | MR | Zbl

[2] V. S. Vladimirov, Equations of mathematical physics, Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971 | MR | Zbl

[3] I. G. Petrovskii, Partial differential equations, Iliffe Books Ltd., London, 1967 | MR | Zbl

[4] L. A. Lusternik and V. J. Sobolev, Elements of functional analysis, Hindustan Publishing Corp., Delhi; Halsted Press [John Wiley Sons, Inc.], New York, 1974 | MR | Zbl

[5] A. N. Tikhonov and A. A. Samarskii, Equations of mathematical physics, The Macmillan Co., New York, 1963 | MR | Zbl

[6] R. Kh. Makaova, “A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 651–664 (Russian) | DOI | Zbl

[7] I. G. Mamedov, “Three-dimensional integro-multipoint boundary value problem for loaded volterra-hyperbolic integro-differential equations of Bianchi type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012), 8–20 (Russian) | DOI | Zbl

[8] A. I. Kozhanov and L. S. Pul'kina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI

[9] O. Kh. Abdullaev, “Boundary value problem for a loaded equation elliptic-hyperbolic type in a doubly connected domain”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2014, no. 1(8), 33–48 (Russian) | DOI | Zbl

[10] L. S. Pul'kina, “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Math. (Iz. VUZ), 56:4 (2012), 62–69 | DOI

[11] A. V. Tarasenko, “The Boundary Value Problem for the Loaded Equation of Mixed Parabolic-Hyperbolic Type in Rectangular Area”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010), 263–267 (Russian) | DOI | Zbl

[12] Zh. A. Balkizov, “The first boundary value problem for a degenerate hyperbolic equation”, Vladikavkaz. Mat. Zh., 18:2 (2016), 19–30 (Russian) | MR | Zbl

[13] V. A. Vogahova and M. S. Balkizova, “A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 28:3 (2019), 6–15 (Russian) | DOI | MR | Zbl

[14] R. Kh. Makaova, “Boundary value problem with a displacement for a hyperbolic equation of third order with a derivative under boundary conditions”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 37:4 (2021), 38–44 (Russian) | DOI | MR | Zbl

[15] A. A. Andreev and E. N. Ogorodnikov, “On the correctness of initial boundary value problems for a single hyperbolic equation with degeneration of order and involutive deviation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 9, Sam State Technical University, Samara, 2000, 32–36 (Russian) | DOI

[16] S. V. Lexina, “The second boundary problem for the system hyperbolic type second order for large $T$”, Izv. Saratov Univ. Math. Mech. Inform., 11:3(2) (2011), 94–99 (Russian) | DOI

[17] N. A. Zhura and A. P. Soldatov, “A boundary-value problem for a first-order hyperbolic system in a two-dimensional domain”, Izv. Math., 81:3 (2017), 542–567 | DOI

[18] R. R. Ashurov and A. T. Muhiddinova, “Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 30:1 (2020), 8–19 (Russian) | DOI | MR | Zbl

[19] K. B. Sabitov, “Initial-boundary problem for parabolic-hyperbolic equation with loaded summands”, Russian Math. (Iz. VUZ), 59:6 (2015), 23–33 | DOI

[20] A. I. Kozhanov and A. V. Dyuzheva, “The second initial-boundary value problem with integral displacement for second-order hyperbolic and parabolic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 423–434 (Russian) | DOI | Zbl

[21] V. Y. Glotov, V. M. Goloviznin, and B. N. Chetverushkin, “Balance and characteristic finite difference schemes for equations of the parabolic type”, Math. Models Comput. Simul., 12:6 (2020), 981–989 | DOI

[22] The theory of difference schemes, Monogr. Textbooks Pure Appl. Math., 240, A. A. Samarskii, New York, 2001 | MR | Zbl

[23] A. S. Sushkov, “The convergence of a difference scheme approximating a boundary value problem of the hyperbolic type”, Chelyab. Fiz.-Mat. Zh., 4:3 (2019), 333–344 (Russian) | DOI | MR | Zbl

[24] A. S. Kholodov and Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comput. Math. Math. Phys., 46:9 (2006), 1560–1588 | DOI

[25] O. P. Komurdzhishvili, “Finite-difference schemes for solving multidimensional hyperbolic equations and their systems”, Comput. Math. Math. Phys., 47:6 (2007), 936–942 | DOI

[26] A. S. Kholodov, “Construction of difference schemes with positive approximation for hyperbolic equations”, U.S.S.R. Comput. Math. Math. Phys., 18:6 (1978), 116–132 | DOI

[27] Ya. A. Kholodov, A. S. Kholodov, and I. V. Tsybulin, “Construction of monotone difference schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 58:8 (2018), 1226–1246 | DOI | MR

[28] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, RI, 1963 | MR | Zbl

[29] P. Antosik, J. Mikusiński, and R. Sikorski, Theory of distributions. The sequential approach, Elsevier Scientific Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw, 1973 | MR | Zbl

[30] B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991 | DOI | MR | Zbl

[31] A. Yu. Trynin, “Asymptotic behavior of the solutions and nodal points of Sturm–Liouville differential expressions”, Siberian Math. J., 51:3 (2010), 525–536 | DOI

[32] A. Yu. Trynin, “A generalization of the Whittaker–Kotel'nikov–Shannon sampling theorem for continuous functions on a closed interval”, Sb. Math., 200:11 (2009), 1633–1679 | DOI

[33] A. Yu. Trynin, “Differential properties of zeros of eigenfunctions of the Sturm–Liouville problem”, Ufa Math. J., 3:4 (2011), 130–140 | MR

[34] A. Yu. Trynin, “On inverse nodal problem for Sturm–Liouville operator”, Ufa Math. J., 5:4 (2013), 112–124 | DOI | MR

[35] I. P. Natanson, Theory of functions of a real variable, v. 1, 2, Frederick Ungar Publishing Co., New York, 1955, 1961 | MR | MR | Zbl

[36] A. M. Olevskii, “Divergent Fourier series for continuous functions”, Soviet Math. Dokl., 2 (1961), 1382–1386

[37] A. M. Olevskii, “Divergent Fourier series”, Izv. Akad. Nauk SSSR Ser. Mat., 27:2 (1963), 343–366 | MR | Zbl

[38] V. V. Buzdalin, “Trigonometric Fourier series of continuous functions diverging on a given set”, Math. USSR-Sb., 24:1 (1974), 79–102 | DOI

[39] K. S. Kazaryan, “Divergent orthogonal Fourier series”, Math. USSR-Sb., 73:2 (1992), 355–377 | DOI