On identities of model algebras
Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1210-1226.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp upper bound for the nilpotency index of the commutator ideal of a $2$-generated subalgebra of an arbitrary model algebra is given; this estimate is about half that for arbitrary Lie nilpotent algebras of the same class. All identities in two variables that hold in the model algebra of multiplicity $3$ are found. For any $m\geqslant 3$, in a free Lie nilpotent algebra $F^{(2m+1)}$ of class $2m$, the kernel polynomial of smallest possible degree is indicated. It is proved that the degree of any identity of a model algebra is greater than its multiplicity.
Keywords: Lie nilpotent algebra, model algebra, identity in two variables
Mots-clés : algebra kernel.
@article{IM2_2023_87_6_a4,
     author = {S. V. Pchelintsev},
     title = {On identities of model algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1210--1226},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a4/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - On identities of model algebras
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1210
EP  - 1226
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a4/
LA  - en
ID  - IM2_2023_87_6_a4
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T On identities of model algebras
%J Izvestiya. Mathematics 
%D 2023
%P 1210-1226
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a4/
%G en
%F IM2_2023_87_6_a4
S. V. Pchelintsev. On identities of model algebras. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1210-1226. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a4/

[1] A. V. Grishin, L. M. Tsybulya, and A. A. Shokola, “On $T$-spaces and relations in relatively free, Lie nilpotent, associative algebras”, J. Math. Sci. (N.Y.), 177:6 (2011), 868–877 | DOI

[2] A. V. Grishin and S. V. Pchelintsev, “On centres of relatively free associative algebras with a Lie nilpotency identity”, Sb. Math., 206:11 (2015), 1610–1627 | DOI

[3] A. V. Grishin and S. V. Pchelintsev, “Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6”, Sb. Math., 207:12 (2016), 1674–1692 | DOI

[4] S. V. Pchelintsev, “Identities of the model algebra of multiplicity 2”, Siberian Math. J., 59:6 (2018), 1105–1124 | DOI

[5] V. Glizburg and S. Pchelintsev, “Some finitely generated associative algebras with a Lie nilpotency identity”, J. Algebra Appl., 20:7 (2021), 2150112 | DOI | MR | Zbl

[6] R. R. Dangovski, On the maximal containments of lower central series ideals, arXiv: 1509.08030

[7] S. V. Pchelintsev, “Relatively free associative Lie nilpotent algebras of rank $3$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1937–1946 (Russian) | DOI | MR | Zbl

[8] V. N. Latyshev, “On the finiteness of the number of generators of a $T$-ideal with an element $[x_1,x_2,x_3,x_4]$”, Sibirsk. Mat. Zh., 6:6 (1965), 1432–1434 (Russian) | MR | Zbl

[9] I. B. Volichenko, $T$-ideal generated by element $[{x}_1,{x}_2,{x}_3,{x}_4]$, Preprint no. 22, Math. Isnst. AN BSSR, Minsk, 1978 (Russian)

[10] G. Falk, “Konstanzelemente in Ringen mit Differentiation”, Math. Ann., 124 (1952), 182–186 | DOI | MR | Zbl

[11] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, RI, 1968 | DOI | MR | Zbl

[12] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., 37, Amer. Math. Soc., Providence, RI, 1956 ; Russian transl. Inostr. Lit., Moscow, 1961 | MR | Zbl | MR | Zbl

[13] W. Specht, “Gesetze in Ringen. I”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl