On identities of model algebras
Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1210-1226

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp upper bound for the nilpotency index of the commutator ideal of a $2$-generated subalgebra of an arbitrary model algebra is given; this estimate is about half that for arbitrary Lie nilpotent algebras of the same class. All identities in two variables that hold in the model algebra of multiplicity $3$ are found. For any $m\geqslant 3$, in a free Lie nilpotent algebra $F^{(2m+1)}$ of class $2m$, the kernel polynomial of smallest possible degree is indicated. It is proved that the degree of any identity of a model algebra is greater than its multiplicity.
Keywords: Lie nilpotent algebra, model algebra, identity in two variables
Mots-clés : algebra kernel.
@article{IM2_2023_87_6_a4,
     author = {S. V. Pchelintsev},
     title = {On identities of model algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1210--1226},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a4/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - On identities of model algebras
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1210
EP  - 1226
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a4/
LA  - en
ID  - IM2_2023_87_6_a4
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T On identities of model algebras
%J Izvestiya. Mathematics 
%D 2023
%P 1210-1226
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a4/
%G en
%F IM2_2023_87_6_a4
S. V. Pchelintsev. On identities of model algebras. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1210-1226. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a4/