Calculation of hyperelliptic systems of sequences of rank 4
Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1185-1209.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulas for sequences of complex numbers satisfying functional relations of bilinear type are investigated. The results obtained are used in describing all 1-periodic entire functions $f,g\colon \mathbb{C}\to\mathbb{C}$ satisfying $f(x+y)g(x-y)=\phi_1(x)\psi_1(y)+\dots+\phi_4(x)\psi_4(y)$ for some $\phi_j,\psi_j\colon \mathbb{C}\to\mathbb{C}$.
Keywords: addition theorems, elliptic functions, functional equations, nonlinear recurrent sequences.
@article{IM2_2023_87_6_a3,
     author = {A. A. Illarionov},
     title = {Calculation of hyperelliptic systems of sequences of rank 4},
     journal = {Izvestiya. Mathematics },
     pages = {1185--1209},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a3/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Calculation of hyperelliptic systems of sequences of rank 4
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1185
EP  - 1209
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a3/
LA  - en
ID  - IM2_2023_87_6_a3
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Calculation of hyperelliptic systems of sequences of rank 4
%J Izvestiya. Mathematics 
%D 2023
%P 1185-1209
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a3/
%G en
%F IM2_2023_87_6_a3
A. A. Illarionov. Calculation of hyperelliptic systems of sequences of rank 4. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1185-1209. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a3/

[1] M. Ward, “Memoir on elliptic divisibility sequences”, Amer. J. Math., 70 (1948), 31–74 | DOI | MR | Zbl

[2] M. O. Avdeeva and V. A. Bykovskii, “Hyperelliptic system of sequences and functions”, Dal'nevost. Mat. Zh., 16:2 (2016), 115–122 (Russian) | MR | Zbl

[3] A. A. Illarionov, “Hyperelliptic systems of sequences of rank 4”, Sb. Math., 210:9 (2019), 1259–1287 | DOI

[4] R. M. Robinson, “Periodicity of Somos sequences”, Proc. Amer. Math. Soc., 116:3 (1992), 613–619 | DOI | MR | Zbl

[5] R. Shipsey, Elliptic divisibility sequences, PhD thesis, Goldsmiths, Univ. London, London, 2000

[6] C. S. Swart, Elliptic curves and related sequences, PhD thesis, Royal Holloway, Univ. London, London, 2003

[7] A. N. W. Hone, “Elliptic curves and quadratic reccurence sequences”, Bull. London Math. Soc., 37:2 (2005), 161–171 | DOI | MR | Zbl

[8] A. J. van der Poorten and C. S. Swart, “Recurrence relations for elliptic sequences: every Somos 4 is a Somos $k$”, Bull. London Math. Soc., 38:4 (2006), 546–554 | DOI | MR | Zbl

[9] A. J. van der Poorten, “Hyperelliptic curves, continued fractions, and Somos sequences”, Dynamics and stochastics, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006, 212–224 | DOI | MR | Zbl

[10] A. N. W. Hone, “Sigma function solution of the initial value problem for Somos 5 sequences”, Trans. Amer. Math. Soc., 359:10 (2007), 5019–5034 | DOI | MR | Zbl

[11] A. N. W. Hone and C. Swart, “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Math. Proc. Cambridge Philos. Soc., 145:1 (2008), 65–85 | DOI | MR | Zbl

[12] A. N. W. Hone, “Analytic solutions and integrability for bilinear recurrences of order six”, Appl. Anal., 89:4 (2010), 473–492 | DOI | MR | Zbl

[13] Y. N. Fedorov and A. N. W. Hone, “Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties”, J. Integrable Syst., 1:1 (2016), xyw012 | DOI | Zbl

[14] V. A. Bykovskii and A. V. Ustinov, “Somos-4 and elliptic systems of sequences”, Dokl. Math., 94:3 (2016), 611–614 | DOI

[15] R. Rochberg and L. A. Rubel, “A functional equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl

[16] A. A. Illarionov, “Solution of functional equations related to elliptic functions”, Proc. Steklov Inst. Math., 299 (2017), 96–108 | DOI

[17] V. M. Buchstaber and D. V. Leikin, “Trilinear functional equations”, Russian Math. Surveys, 60:2 (2005), 341–343 | DOI

[18] V. M. Bukhshtaber and D. V. Leĭkin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120

[19] V. M. Buchstaber and I. M. Krichever, “Integrable equations, addition theorems, and the Riemann–Schottky problem”, Russian Math. Surveys, 61:1 (2006), 19–78 | DOI

[20] V. A. Bykovskii, “Hyperquasipolynomials and their applications”, Funct. Anal. Appl., 50:3 (2016), 193–203 | DOI

[21] A. A. Illarionov and M. A. Romanov, “Hyperquasipolynomials for the theta-function”, Funct. Anal. Appl., 52:3 (2018), 228–231 | DOI

[22] A. A. Illarionov, “On a multilinear functional equation”, Math. Notes, 107:1 (2020), 80–92 | DOI

[23] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:4 (1994), 591–610 | DOI | MR | Zbl

[24] P. Sinopoulos, “Generalized sine equation. I”, Aequationes Math., 48:2-3 (1994), 171–193 | DOI | MR | Zbl

[25] M. Bonk, “The characterization of theta functions by functional equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl

[26] M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1-2 (1997), 54–72 | DOI | MR | Zbl

[27] A. Járai and W. Sander, “On the characterization of Weierstrass's sigma function”, Functional equations – results and advances, Adv. Math. (Dordr.), 3, Kluwer Acad. Publ., Dordrecht, 2002, 29–79 | DOI | MR | Zbl

[28] A. A. Illarionov, “Functional equations and Weierstrass sigma-functions”, Funct. Anal. Appl., 50:4 (2016), 281–290 | DOI

[29] A. A. Illarionov, “Solution of functional equations related to elliptic functions. II”, Sib. Èlektron. Mat. Izv., 16 (2019), 481–492 (Russian) | DOI | MR | Zbl

[30] T. Levi-Civita, “Sulle funzioni che ammettono una formula d'addizione del tipo $f(x+y) \,{=} \sum_{i=1}^n X_i(x) Y_i(y)$”, Atti Accad. Naz. Lincei. Rend. (5), 22:2 (1913), 181–183 | Zbl

[31] A. O. Gelfond, Calculus of finite differences, Int. Monogr. Adv. Math. Phys., Hindustan Publishing Corp., Delhi, 1971 | MR | Zbl

[32] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Part II, 4th ed., Cambridge Univ. Press, Cambridge, 1927, 233–578 | DOI | MR | Zbl