Calculation of hyperelliptic systems of sequences of rank 4
Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1185-1209
Voir la notice de l'article provenant de la source Math-Net.Ru
Formulas for sequences of complex numbers satisfying functional relations
of bilinear type are investigated. The results obtained are used
in describing all 1-periodic entire functions
$f,g\colon \mathbb{C}\to\mathbb{C}$ satisfying
$f(x+y)g(x-y)=\phi_1(x)\psi_1(y)+\dots+\phi_4(x)\psi_4(y)$
for some $\phi_j,\psi_j\colon \mathbb{C}\to\mathbb{C}$.
Keywords:
addition theorems, elliptic functions, functional equations,
nonlinear recurrent sequences.
@article{IM2_2023_87_6_a3,
author = {A. A. Illarionov},
title = {Calculation of hyperelliptic systems of sequences of rank 4},
journal = {Izvestiya. Mathematics },
pages = {1185--1209},
publisher = {mathdoc},
volume = {87},
number = {6},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a3/}
}
A. A. Illarionov. Calculation of hyperelliptic systems of sequences of rank 4. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1185-1209. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a3/