On the fibre structure of compact homogeneous spaces
Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1161-1184.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers properties of several bundles (natural, structural and Borel ones) related to compact homogeneous spaces. Some results on elements of these bundles are proved, illustrative examples are given, counterexamples to some naturally arising assumptions are put forward.
Keywords: homogeneous space, natural fibration, structural fibration, structural group, fibre and base of fibration.
@article{IM2_2023_87_6_a2,
     author = {V. V. Gorbatsevich},
     title = {On the fibre structure of compact homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1161--1184},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On the fibre structure of compact homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1161
EP  - 1184
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a2/
LA  - en
ID  - IM2_2023_87_6_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On the fibre structure of compact homogeneous spaces
%J Izvestiya. Mathematics 
%D 2023
%P 1161-1184
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a2/
%G en
%F IM2_2023_87_6_a2
V. V. Gorbatsevich. On the fibre structure of compact homogeneous spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1161-1184. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a2/

[1] V. V. Gorbatsevich and A. L. Onishchik, “Lie groups of transformations”, Lie groups and Lie algebras I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–229 | DOI | MR | Zbl

[2] V. V. Gorbatsevich, “Plesiocompact homogeneous spaces”, Siberian Math. J., 30:2 (1989), 217–226 ; “On plesiocompact homogeneous spaces. II”, 32:2 (1991), 186–196 | DOI | DOI

[3] V. V. Gorbatsevich, “Compact homogeneous spaces and their generalizations”, J. Math. Sci. (N.Y.), 153:6 (2008), 763–798 | DOI

[4] V. V. Gorbatsevich, “A Seifert bundle for a plesiocompact homogeneous space”, Siberian Math. J., 37:2 (1996), 258–267 | DOI

[5] V. V. Gorbatsevich, “Modifications of transitive actions of Lie groups on compact manifolds and their applications”, Problems in group theory and homological algebra, Yaroslav. Gos. Univ., Yaroslavl', 1981, 131–145 (Russian) | MR | Zbl

[6] V. V. Gorbatsevich, “On the triviality of natural bundles of some compact homogeneous spaces”, Russian Math. (Iz. VUZ), 44:1 (2000), 13–17

[7] V. V. Gorbatsevich, “Three-dimensional homogeneous spaces”, Siberian Math. J., 18:2 (1977), 200–210 | DOI

[8] J. Tollefson, “The compact 3-manifolds covered by $S^2 \times R^1$”, Proc. Amer. Math. Soc., 45 (1974), 461–462 | DOI | MR | Zbl

[9] W. C. Hsiang and J. L. Shaneson, “Fake tori, the annulus conjecture and the conjectures of Kirby”, Proc. Nat. Acad. Sci. U.S.A., 62:3 (1969), 687–691 | DOI | MR | Zbl

[10] A. Bartels, F. T. Farrell, and W. Lück, “The Farrell–Jones Conjecture for cocompact lattices in virtually connected Lie groups”, J. Amer. Math. Soc., 27:2 (2014), 339–388

[11] H. Kammeyer, W. Lück, and H. Rüping, “The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups”, Geom. Topol., 20:3 (2016), 1275–1287 | DOI | MR | Zbl

[12] S. MacLane, Homology, Grundlehren Math. Wiss., 114, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl

[13] V. V. Gorbatsevich, “On a fibration of compact homogeneous spaces”, Trans. Moscow Math. Soc., 1983:1 (1983), 129–157

[14] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[15] V. V. Gorbatsevich, “On the isomorphism and diffeomorphism of compact semisimple Lie groups”, Math. Notes, 112:3 (2022), 388–392 | DOI

[16] V. L. Popov, “Group varieties and group structures”, Izv. Math., 86:5 (2022), 903–924 | DOI

[17] J. A. Wolf, “Discrete groups, symmetric spaces, and global holonomy”, Amer. J. Math., 84:4 (1962), 527–542 | DOI | MR | Zbl

[18] V. V. Gorbatsevich, “Compact homogeneous spaces with a semisimple fundamental group. II”, Siberian Math. J., 27:5 (1986), 660–669 | DOI

[19] V. V. Gorbatsevich, “A criterion for the existence of a natural fibering for a compact homogeneous manifold”, Math. Notes, 35:2 (1984), 147–151 | DOI

[20] E. B. Vinberg, V. V. Gorbatsevich, and O. V. Schwarzman, “Discrete subgroups of Lie groups”, Lie groups and Lie algebras II, Encyclopaedia Math. Sci., 21, Springer, Berlin, 2000, 1–123 | MR | Zbl

[21] A. Yu. Ol'shanskiĭ, “An infinite group with subgroups of prime orders”, Math. USSR-Izv., 16:2 (1981), 279–289 | DOI

[22] P. Deligne, “Extensions centrales non résiduellement finies de groupes arithmétiques”, C. R. Acad. Sci. Paris Sér. A-B, 287:4 (1978), A203–A208 | MR | Zbl

[23] M. S. Raghunathan, “Torsion in cocompact lattices in coverings of $\operatorname{Spin}(2,n)$”, Math. Ann., 266:4 (1984), 403–419 | DOI | MR | Zbl

[24] S. Ottenburger, Simply and tangentially homotopy equivalent but non-homeomorphic homogeneous manifolds, 2011, arXiv: 1102.5708v2

[25] B. Mazur, “Stable equivalence of differentiable manifolds”, Bull. Amer. Math. Soc., 67 (1961), 377–384 | DOI | MR | Zbl

[26] M. Kreck and S. Stolz, “A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with $\operatorname{SU}(3)\times \operatorname{SU}(2)\times \mathrm U(1)$-symmetry”, Ann. of Math. (2), 127:2 (1988), 373–388 | DOI | MR | Zbl

[27] V. V. Gorbatsevich, “Two stratifications of a compact homogeneous space and applications”, Soviet Math. (Izv. VUZ), 25:6 (1981), 73–75

[28] V. V. Gorbatsevich, “On a class of compact homogeneous spaces”, Soviet Math. (Iz. VUZ), 27:9 (1983), 18–22

[29] V. V. Gorbatsevich, “On compact homogeneous manifolds of low dimension”, Geom. Metody Zadachakh Algebry Anal., 2, Yaroslav. Gos. Univ., Yaroslavl', 1980, 37–60 (Russian) | MR | Zbl