Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_6_a2, author = {V. V. Gorbatsevich}, title = {On the fibre structure of compact homogeneous spaces}, journal = {Izvestiya. Mathematics }, pages = {1161--1184}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a2/} }
V. V. Gorbatsevich. On the fibre structure of compact homogeneous spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1161-1184. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a2/
[1] V. V. Gorbatsevich and A. L. Onishchik, “Lie groups of transformations”, Lie groups and Lie algebras I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–229 | DOI | MR | Zbl
[2] V. V. Gorbatsevich, “Plesiocompact homogeneous spaces”, Siberian Math. J., 30:2 (1989), 217–226 ; “On plesiocompact homogeneous spaces. II”, 32:2 (1991), 186–196 | DOI | DOI
[3] V. V. Gorbatsevich, “Compact homogeneous spaces and their generalizations”, J. Math. Sci. (N.Y.), 153:6 (2008), 763–798 | DOI
[4] V. V. Gorbatsevich, “A Seifert bundle for a plesiocompact homogeneous space”, Siberian Math. J., 37:2 (1996), 258–267 | DOI
[5] V. V. Gorbatsevich, “Modifications of transitive actions of Lie groups on compact manifolds and their applications”, Problems in group theory and homological algebra, Yaroslav. Gos. Univ., Yaroslavl', 1981, 131–145 (Russian) | MR | Zbl
[6] V. V. Gorbatsevich, “On the triviality of natural bundles of some compact homogeneous spaces”, Russian Math. (Iz. VUZ), 44:1 (2000), 13–17
[7] V. V. Gorbatsevich, “Three-dimensional homogeneous spaces”, Siberian Math. J., 18:2 (1977), 200–210 | DOI
[8] J. Tollefson, “The compact 3-manifolds covered by $S^2 \times R^1$”, Proc. Amer. Math. Soc., 45 (1974), 461–462 | DOI | MR | Zbl
[9] W. C. Hsiang and J. L. Shaneson, “Fake tori, the annulus conjecture and the conjectures of Kirby”, Proc. Nat. Acad. Sci. U.S.A., 62:3 (1969), 687–691 | DOI | MR | Zbl
[10] A. Bartels, F. T. Farrell, and W. Lück, “The Farrell–Jones Conjecture for cocompact lattices in virtually connected Lie groups”, J. Amer. Math. Soc., 27:2 (2014), 339–388
[11] H. Kammeyer, W. Lück, and H. Rüping, “The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups”, Geom. Topol., 20:3 (2016), 1275–1287 | DOI | MR | Zbl
[12] S. MacLane, Homology, Grundlehren Math. Wiss., 114, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl
[13] V. V. Gorbatsevich, “On a fibration of compact homogeneous spaces”, Trans. Moscow Math. Soc., 1983:1 (1983), 129–157
[14] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[15] V. V. Gorbatsevich, “On the isomorphism and diffeomorphism of compact semisimple Lie groups”, Math. Notes, 112:3 (2022), 388–392 | DOI
[16] V. L. Popov, “Group varieties and group structures”, Izv. Math., 86:5 (2022), 903–924 | DOI
[17] J. A. Wolf, “Discrete groups, symmetric spaces, and global holonomy”, Amer. J. Math., 84:4 (1962), 527–542 | DOI | MR | Zbl
[18] V. V. Gorbatsevich, “Compact homogeneous spaces with a semisimple fundamental group. II”, Siberian Math. J., 27:5 (1986), 660–669 | DOI
[19] V. V. Gorbatsevich, “A criterion for the existence of a natural fibering for a compact homogeneous manifold”, Math. Notes, 35:2 (1984), 147–151 | DOI
[20] E. B. Vinberg, V. V. Gorbatsevich, and O. V. Schwarzman, “Discrete subgroups of Lie groups”, Lie groups and Lie algebras II, Encyclopaedia Math. Sci., 21, Springer, Berlin, 2000, 1–123 | MR | Zbl
[21] A. Yu. Ol'shanskiĭ, “An infinite group with subgroups of prime orders”, Math. USSR-Izv., 16:2 (1981), 279–289 | DOI
[22] P. Deligne, “Extensions centrales non résiduellement finies de groupes arithmétiques”, C. R. Acad. Sci. Paris Sér. A-B, 287:4 (1978), A203–A208 | MR | Zbl
[23] M. S. Raghunathan, “Torsion in cocompact lattices in coverings of $\operatorname{Spin}(2,n)$”, Math. Ann., 266:4 (1984), 403–419 | DOI | MR | Zbl
[24] S. Ottenburger, Simply and tangentially homotopy equivalent but non-homeomorphic homogeneous manifolds, 2011, arXiv: 1102.5708v2
[25] B. Mazur, “Stable equivalence of differentiable manifolds”, Bull. Amer. Math. Soc., 67 (1961), 377–384 | DOI | MR | Zbl
[26] M. Kreck and S. Stolz, “A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with $\operatorname{SU}(3)\times \operatorname{SU}(2)\times \mathrm U(1)$-symmetry”, Ann. of Math. (2), 127:2 (1988), 373–388 | DOI | MR | Zbl
[27] V. V. Gorbatsevich, “Two stratifications of a compact homogeneous space and applications”, Soviet Math. (Izv. VUZ), 25:6 (1981), 73–75
[28] V. V. Gorbatsevich, “On a class of compact homogeneous spaces”, Soviet Math. (Iz. VUZ), 27:9 (1983), 18–22
[29] V. V. Gorbatsevich, “On compact homogeneous manifolds of low dimension”, Geom. Metody Zadachakh Algebry Anal., 2, Yaroslav. Gos. Univ., Yaroslavl', 1980, 37–60 (Russian) | MR | Zbl