Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_6_a1, author = {E. V. Glukhov and O. I. Mokhov}, title = {Algebraic-geometry approach to construction}, journal = {Izvestiya. Mathematics }, pages = {1148--1160}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a1/} }
E. V. Glukhov; O. I. Mokhov. Algebraic-geometry approach to construction. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1148-1160. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a1/
[1] B. A. Dubrovin and S. P. Novikov, “Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov–Whitham averaging method”, Soviet Math. Dokl., 27:3 (1983), 665–669
[2] S. P. Tsarëv, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR-Izv., 37:2 (1991), 397–419 | DOI
[3] J. Haantjes, “On $X_m$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 58, Indag. Math., 17 (1955), 158–162 | DOI | MR | Zbl
[4] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 54, Indag. Math., 13 (1951), 200–212 | DOI | MR | Zbl
[5] O. I. Mokhov, “On metrics of diagonal curvature”, J. Math. Sci. (N.Y.), 248:6 (2020), 780–787 | DOI
[6] M. V. Pavlov, R. A. Sharipov, and S. I. Svinolupov, “Invariant integrability criterion for equations of hydrodynamic type”, Funct. Anal. Appl., 30:1 (1996), 15–22 | DOI
[7] O. I. Mokhov and E. V. Ferapontov, “Non-local Hamiltonian operators of hydrodynamic type related to metrics of constant curvature”, Russian Math. Surveys, 45:3 (1990), 218–219 | DOI
[8] E. V. Ferapontov, “Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type”, Funct. Anal. Appl., 25:3 (1991), 195–204 | DOI
[9] O. I. Mokhov, “Riemann invariants of semisimple non-locally bi-Hamiltonian systems of hydrodynamic type and compatible metrics”, Russian Math. Surveys, 65:6 (2010), 1183–1185 | DOI | Zbl
[10] O. I. Mokhov, “Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type”, Theoret. and Math. Phys., 167:1 (2011), 403–420 | DOI
[11] O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937 | DOI
[12] V. E. Zakharov, “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lamé equations”, Duke Math J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[13] V. Zakharov, “Application of inverse scattering method to problems of differential geometry”, The legacy of the inverse scattering transform in applied mathematics (South Hadley, MA 2001), Contemp. Math., 301, Amer. Math. Soc., Providence, RI, 2002, 15–34 | DOI | MR | Zbl
[14] I. M. Krichever, “Algebraic-geometric $n$-orthogonal curvilinear coordinate systems and solutions of the associativity equations”, Funct. Anal. Appl., 31:1 (1997), 25–39 | DOI
[15] D. A. Berdinsky and I. P. Rybnikov, “On orthogonal curvilinear coordinate systems in constant curvature spaces”, Siberian Math. J., 52:3 (2011), 394–401 | DOI
[16] E. V. Glukhov and O. I. Mokhov, “On algebraic-geometry methods for constructing flat diagonal metrics of a special form”, Russian Math. Surveys, 74:4 (2019), 761–763 | DOI
[17] E. V. Glukhov and O. I. Mokhov, “On algebraic-geometric methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines”, Funct. Anal. Appl., 54:3 (2020), 169–178 | DOI
[18] A. E. Mironov and I. A. Taimanov, “Orthogonal curvilinear coordinate systems corresponding to singular spectral curves”, Proc. Steklov Inst. Math., 255 (2006), 169–184 | DOI
[19] O. Mokhov, “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Adv. Math. Sci., 27, Amer. Math. Soc., Providence, RI, 1995, 121–151 | DOI | MR | Zbl
[20] O. Mokhov, “Poisson and symplectic geometry on loop spaces of smooth manifolds”, Geometry from the Pacific Rim (Singapore 1994), Walter de Gruyter, Berlin, 1997, 285–309 | DOI | MR | Zbl
[21] O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622 | DOI
[22] O. I. Mokhov and E. V. Ferapontov, “The associativity equations in the two-dimensional topological field theory as integrable Hamiltonian nondiagonalizable systems of hydrodynamic type”, Funct. Anal. Appl., 30:3 (1996), 195–203 | DOI
[23] E. V. Ferapontov and O. I. Mokhov, “On the Hamiltonian representation of the associativity equations”, Algebraic aspects of integrable systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Inc., Boston, MA, 1997, 75–91 | DOI | MR | Zbl
[24] E. V. Ferapontov and O. I. Mokhov, “The equations of the associativity as hydrodynamical type system: Hamiltonian representation and integrability”, Nonlinear physics: theory and experiment (Lecce 1995), World Sci. Publ., River Edge, NJ, 1996, 104–115 | MR | Zbl
[25] E. V. Ferapontov, C. A. P. Galvão, O. I. Mokhov, and Y. Nutku, “Bi-Hamiltonian structure in 2-d field theory”, Comm. Math. Phys., 186:3 (1997), 649–669 | DOI | MR | Zbl
[26] O. I. Mokhov and N. A. Strizhova, “Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type”, Russian Math. Surveys, 73:1 (2018), 175–177 | DOI
[27] O. I. Mokhov and N. A. Pavlenko, “Classification of the associativity equations with a first-order Hamiltonian operator”, Theoret. and Math. Phys., 197:1 (2018), 1501–1513 | DOI