A functional realization of the Gelfand--Tsetlin base
Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1117-1147.

Voir la notice de l'article provenant de la source Math-Net.Ru

A realization of a finite dimensional irreducible representation of the Lie algebra $\mathfrak{gl}_n$ in the space of functions on the group $\mathrm{GL}_n$ is considered. It is proved that functions corresponding to Gelfand–Tsetlin diagrams are linear combinations of some new functions of hypergeometric type which are closely related to $A$-hypergeometric functions. These new functions are solution of a system of partial differential equations which follows from the Gelfand–Kapranov–Zelevinsky by an “antisymmetrization”. The coefficients in the constructed linear combination are hypergeometric constants, that is, they are values of some hypergeometric functions when instead of all arguments ones are substituted.
Keywords: the Gelfand–Tsetlin base, hypergeometric functions, the Gelfand–Kapranov–Zelevinsky system.
@article{IM2_2023_87_6_a0,
     author = {D. V. Artamonov},
     title = {A functional realization of the {Gelfand--Tsetlin} base},
     journal = {Izvestiya. Mathematics },
     pages = {1117--1147},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - A functional realization of the Gelfand--Tsetlin base
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1117
EP  - 1147
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a0/
LA  - en
ID  - IM2_2023_87_6_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T A functional realization of the Gelfand--Tsetlin base
%J Izvestiya. Mathematics 
%D 2023
%P 1117-1147
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a0/
%G en
%F IM2_2023_87_6_a0
D. V. Artamonov. A functional realization of the Gelfand--Tsetlin base. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1117-1147. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a0/

[1] I. M. Gelfand and M. S. Tsetlin, “Finite-dimensional representations of groups of unimodular matrices”, Dokl. Akad. Nauk SSSR, 71:5 (1950), 825–828 (Russian) | MR | Zbl

[2] G. E. Baird and L. C. Biedenharn, “On the representations of semisimple Lie groups. II”, J. Math. Phys., 4:12 (1963), 1449–1466 | DOI | MR | Zbl

[3] D. V. Artamonov, “Clebsh–Gordan coefficients for the algebra $\mathfrak{gl}_3$ and hypergeometric functions”, St. Petersburg Math. J., 33:1 (2022), 1–22 | DOI

[4] P. A. Valinevich, “Construction of the Gelfand–Tsetlin basis for unitary principal series representations of the algebra $\mathfrak{sl}_n(\mathbb C)$”, Theoret. and Math. Phys., 198:1 (2019), 145–155 | DOI

[5] V. K. Dobrev and P. Truini, “Polynomial realization of $U_q(\mathrm{sl}(3))$ Gel'fand–(Weyl)–Zetlin basis”, J. Math. Phys., 38:7 (1997), 3750–3767 | DOI | MR | Zbl

[6] V. K. Dobrev, A. D. Mitov, and P. Truini, “Normalized $U_q(\mathrm{sl}(3))$ Gel'fand–(Weyl)–Zetlin basis and new summation formulas for $q$-hypergeometric functions”, J. Math. Phys., 41:11 (2000), 7752–7768 | DOI | MR | Zbl

[7] D. V. Artamonov, “A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and hypergeometric functions”, Theoret. and Math. Phys., 206:3 (2021), 243–257 | DOI

[8] D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973 | DOI | MR | Zbl

[9] I. M. Gelfand, M. I. Graev, and V. S. Retah, “General hypergeometric systems of equations and series of hypergeometric type”, Russian Math. Surveys, 47:4 (1992), 1–88 | DOI

[10] D. V. Artamonov, “Formula for the product of Gauss hypergeometric functions and applications”, J. Math. Sci. (N.Y.), 249 (2020), 817–826 | DOI | MR | Zbl

[11] I. M. Gelfand, A. V. Zelevinskii, and M. M. Kapranov, “Hypergeometric functions and toral manifolds”, Funct. Anal. Appl., 23:2 (1989), 94–106 | DOI

[12] J. Kamnitzer, “Geometric constructions of the irreducible representations of $GL_n$”, Geometric representation theory and extended affine Lie algebras (Ottawa 2009), Fields Inst. Commun., 59, Amer. Math. Soc., Providence, RI, 2011, 1–18 | MR | Zbl

[13] V. Guillemin and S. Sternberg, “The Gelfand–Cetlin system and quantization of the complex flag manifolds”, J. Funct. Anal., 52:1 (1983), 106–128 | DOI | MR | Zbl

[14] T. M. Sadykov and A. K. Tsikh, Hypergeometric and algebraic functions of several variables, Nauka, Moscow, 2014 (in Russian)

[15] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Grad. Texts in Math., 227, Springer-Verlag, New York, 2005 | DOI | MR | Zbl

[16] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley Publ. Co., Reading, MA, 1994 | MR | Zbl