Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_6_a0, author = {D. V. Artamonov}, title = {A functional realization of the {Gelfand--Tsetlin} base}, journal = {Izvestiya. Mathematics }, pages = {1117--1147}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a0/} }
D. V. Artamonov. A functional realization of the Gelfand--Tsetlin base. Izvestiya. Mathematics , Tome 87 (2023) no. 6, pp. 1117-1147. http://geodesic.mathdoc.fr/item/IM2_2023_87_6_a0/
[1] I. M. Gelfand and M. S. Tsetlin, “Finite-dimensional representations of groups of unimodular matrices”, Dokl. Akad. Nauk SSSR, 71:5 (1950), 825–828 (Russian) | MR | Zbl
[2] G. E. Baird and L. C. Biedenharn, “On the representations of semisimple Lie groups. II”, J. Math. Phys., 4:12 (1963), 1449–1466 | DOI | MR | Zbl
[3] D. V. Artamonov, “Clebsh–Gordan coefficients for the algebra $\mathfrak{gl}_3$ and hypergeometric functions”, St. Petersburg Math. J., 33:1 (2022), 1–22 | DOI
[4] P. A. Valinevich, “Construction of the Gelfand–Tsetlin basis for unitary principal series representations of the algebra $\mathfrak{sl}_n(\mathbb C)$”, Theoret. and Math. Phys., 198:1 (2019), 145–155 | DOI
[5] V. K. Dobrev and P. Truini, “Polynomial realization of $U_q(\mathrm{sl}(3))$ Gel'fand–(Weyl)–Zetlin basis”, J. Math. Phys., 38:7 (1997), 3750–3767 | DOI | MR | Zbl
[6] V. K. Dobrev, A. D. Mitov, and P. Truini, “Normalized $U_q(\mathrm{sl}(3))$ Gel'fand–(Weyl)–Zetlin basis and new summation formulas for $q$-hypergeometric functions”, J. Math. Phys., 41:11 (2000), 7752–7768 | DOI | MR | Zbl
[7] D. V. Artamonov, “A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and hypergeometric functions”, Theoret. and Math. Phys., 206:3 (2021), 243–257 | DOI
[8] D. P. Želobenko, Compact Lie groups and their representations, Transl. Math. Monogr., 40, Amer. Math. Soc., Providence, RI, 1973 | DOI | MR | Zbl
[9] I. M. Gelfand, M. I. Graev, and V. S. Retah, “General hypergeometric systems of equations and series of hypergeometric type”, Russian Math. Surveys, 47:4 (1992), 1–88 | DOI
[10] D. V. Artamonov, “Formula for the product of Gauss hypergeometric functions and applications”, J. Math. Sci. (N.Y.), 249 (2020), 817–826 | DOI | MR | Zbl
[11] I. M. Gelfand, A. V. Zelevinskii, and M. M. Kapranov, “Hypergeometric functions and toral manifolds”, Funct. Anal. Appl., 23:2 (1989), 94–106 | DOI
[12] J. Kamnitzer, “Geometric constructions of the irreducible representations of $GL_n$”, Geometric representation theory and extended affine Lie algebras (Ottawa 2009), Fields Inst. Commun., 59, Amer. Math. Soc., Providence, RI, 2011, 1–18 | MR | Zbl
[13] V. Guillemin and S. Sternberg, “The Gelfand–Cetlin system and quantization of the complex flag manifolds”, J. Funct. Anal., 52:1 (1983), 106–128 | DOI | MR | Zbl
[14] T. M. Sadykov and A. K. Tsikh, Hypergeometric and algebraic functions of several variables, Nauka, Moscow, 2014 (in Russian)
[15] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Grad. Texts in Math., 227, Springer-Verlag, New York, 2005 | DOI | MR | Zbl
[16] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley Publ. Co., Reading, MA, 1994 | MR | Zbl