The renormalization group transformation in the generalized fermionic hierarchical model
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 1011-1023
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a two-dimensional hierarchical lattice in which the vertices
of a square represent an elementary cell. In the generalized hierarchical model,
the distance between opposite vertices of a square differs from that
between adjacent vertices and is a parameter of the new model.
The Gaussian part of the Hamiltonian
of the 4-component generalized fermionic hierarchical model
is invariant
under the block-spin renormalization group transformation.
The transformation of the renormalization group in the space of coefficients,
which specify the Grassmann-valued density of the free measure, is explicitly
calculated as a homogeneous mapping of degree four in the two-dimensional
projective space.
Keywords:
renormalization group, hierarchical lattice, fermionic model, projective space.
@article{IM2_2023_87_5_a9,
author = {M. D. Missarov and D. A. Khajrullin},
title = {The renormalization group transformation in the generalized fermionic hierarchical model},
journal = {Izvestiya. Mathematics },
pages = {1011--1023},
publisher = {mathdoc},
volume = {87},
number = {5},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a9/}
}
TY - JOUR AU - M. D. Missarov AU - D. A. Khajrullin TI - The renormalization group transformation in the generalized fermionic hierarchical model JO - Izvestiya. Mathematics PY - 2023 SP - 1011 EP - 1023 VL - 87 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a9/ LA - en ID - IM2_2023_87_5_a9 ER -
M. D. Missarov; D. A. Khajrullin. The renormalization group transformation in the generalized fermionic hierarchical model. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 1011-1023. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a9/