The renormalization group transformation in the generalized fermionic hierarchical model
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 1011-1023.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-dimensional hierarchical lattice in which the vertices of a square represent an elementary cell. In the generalized hierarchical model, the distance between opposite vertices of a square differs from that between adjacent vertices and is a parameter of the new model. The Gaussian part of the Hamiltonian of the 4-component generalized fermionic hierarchical model is invariant under the block-spin renormalization group transformation. The transformation of the renormalization group in the space of coefficients, which specify the Grassmann-valued density of the free measure, is explicitly calculated as a homogeneous mapping of degree four in the two-dimensional projective space.
Keywords: renormalization group, hierarchical lattice, fermionic model, projective space.
@article{IM2_2023_87_5_a9,
     author = {M. D. Missarov and D. A. Khajrullin},
     title = {The renormalization group transformation in the generalized fermionic hierarchical model},
     journal = {Izvestiya. Mathematics },
     pages = {1011--1023},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a9/}
}
TY  - JOUR
AU  - M. D. Missarov
AU  - D. A. Khajrullin
TI  - The renormalization group transformation in the generalized fermionic hierarchical model
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1011
EP  - 1023
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a9/
LA  - en
ID  - IM2_2023_87_5_a9
ER  - 
%0 Journal Article
%A M. D. Missarov
%A D. A. Khajrullin
%T The renormalization group transformation in the generalized fermionic hierarchical model
%J Izvestiya. Mathematics 
%D 2023
%P 1011-1023
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a9/
%G en
%F IM2_2023_87_5_a9
M. D. Missarov; D. A. Khajrullin. The renormalization group transformation in the generalized fermionic hierarchical model. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 1011-1023. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a9/

[1] F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet”, Comm. Math. Phys., 12:2 (1969), 91–107 | DOI | MR | Zbl

[2] Ya. G. Sinai, Theory of phase transitions: rigorous results, International Series in Natural Philosophy, 108, Pergamon Press, Oxford–Elmsford, NY, 1982 | MR | Zbl

[3] É. Yu. Lerner and M. D. Missarov, “Scalar models of $p$-adic quantum field theory and hierarchical models”, Theoret. and Math. Phys., 78:2 (1989), 177–184 | DOI

[4] I. V. Volovich, “$p$-adic string”, Classical Quantum Gravity, 4:4 (1987), L83–L87 | DOI | MR

[5] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Sci. Publ., River Edge, NJ, 1994 | DOI | MR | Zbl

[6] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[7] M. D. Missarov, “Renormalization group solution of fermionic Dyson model”, Asymptotic combinatorics with application to mathematical physics (St. Petersburg 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, 151–166 | DOI | MR | Zbl

[8] M. D. Missarov and A. F. Shamsutdinov, “Zone structure of the renormalization group flow in a fermionic hierarchical model”, Theoret. and Math. Phys., 194:3 (2018), 377–383 | DOI

[9] M. D. Missarov, “$p$-adic renormalization group solutions and the Euclidean renormalization group conjectures”, $p$-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 109–114 | DOI | MR | Zbl

[10] M. D. Missarov, “New variant of the fermionic model on the hierarchical two-dimensional lattice”, $p$-Adic Numbers Ultrametric Anal. Appl., 12:2 (2020), 163–170 | DOI | MR | Zbl