Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_5_a7, author = {V. V. Kozlov}, title = {Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees}, journal = {Izvestiya. Mathematics }, pages = {972--986}, publisher = {mathdoc}, volume = {87}, number = {5}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a7/} }
V. V. Kozlov. Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 972-986. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a7/
[1] M. L. Byalyi, “First integrals that are polynomial in momenta for a mechanical system on a two-dimensional torus”, Funktsional. Anal. i Prilozhen., 21:4 (1987), 310–312 | DOI
[2] V. V. Kozlov and D. V. Treshchev, “On the integrability of Hamiltonian systems with toral position space”, Math. USSR-Sb., 63:1 (1989), 121–139 | DOI
[3] N. V. Denisova and V. V. Kozlov, “Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space”, Sb. Math., 191:2 (2000), 189–208 | DOI
[4] N. V. Denisova, V. V. Kozlov, and D. V. Treschev, “Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space”, Izv. Math., 76:5 (2012), 907–921 | DOI
[5] A. E. Mironov, “On polynomial integrals of a mechanical system on a two-dimensional torus”, Izv. Math., 74:4 (2010), 805–817 | DOI
[6] N. V. Denisova and V. V. Kozlov, “On the chaotization of the oscillations of coupled pendulums”, Dokl. Phys., 44:7 (1999), 466–468
[7] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, v. I, Gauthier-Villars, Paris, 1892 ; v. II, 1893 (French) ; English transl. H. Poincaré, “New methods of celestial mechanics”, NASA TT F-452, Nat. Aeronaut. Space Admin., Washington, DC 1967, Revised reprint of the 1967 Hist. Modern Phys. Astronom., vol. 13, Amer. Inst. Phys., New York, 1993 | MR | Zbl | MR | Zbl
[8] N. V. Denisova, “On momentum-polynomial integrals of a reversible Hamiltonian system of a certain form”, Selected issues of mathematics and mechanics, Proc. Steklov Inst. Math., 310, 2020, 131–136 | DOI
[9] P. Appell, Traité de mécanique rationnelle, v. I, 5 éd., Gauthier-Villars, Paris, 1926 | Zbl
[10] J. Drach, “Sur l'intégration logique des équations de la dynamique à deux variables: Forces conservatives. Intégrales cubiques. Mouvements dans le plan”, C. R. Acad. Sci. Paris, 200 (1935), 22–26 | Zbl
[11] A. V. Tsyganov, “Degenerate integrable systems on the plane with a cubic integral of motion”, Theoret. and Math. Phys., 124:3 (2000), 1217–1233 | DOI