Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 972-986.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems with toric configuration space and kinetic energy in the form of a “flat” Riemannian metric on the torus. The potential energy $V$ is a smooth function on the configuration torus. The dynamics of such systems is described by “natural” Hamiltonian systems of differential equations. If $V$ is replaced by $\varepsilon V$, where $\varepsilon$ is a small parameter, then the study of such Hamiltonian systems for small $\varepsilon$ is a part of the “main problem of dynamics” according to Poincaré. We discuss the well-known conjecture on the existence of single-valued momentum-polynomial integrals of motion equations: if there is a momentum-polynomial integral of degree $m$, then there exist a momentum-linear or momentum-quadratic integral. This conjecture was verified in full generality for $m=3$ and $m=4$. We study the cases of “higher” degrees $m=5$ and $m=6$. Similarly to the theory of perturbations of Hamiltonian systems, we introduce resonance lines on the momentum plane. If a system admits a polynomial integral, then the number of these lines is finite. The symmetries of the set of resonance lines are found, from which, in particular, necessary conditions for integrability are derived. Some new criteria for the existence of single-valued polynomial integrals are obtained.
Keywords: Hamiltonian system, spectrum, resonance line, polynomial integral.
Mots-clés : configuration torus
@article{IM2_2023_87_5_a7,
     author = {V. V. Kozlov},
     title = {Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees},
     journal = {Izvestiya. Mathematics },
     pages = {972--986},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a7/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 972
EP  - 986
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a7/
LA  - en
ID  - IM2_2023_87_5_a7
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees
%J Izvestiya. Mathematics 
%D 2023
%P 972-986
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a7/
%G en
%F IM2_2023_87_5_a7
V. V. Kozlov. Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 972-986. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a7/

[1] M. L. Byalyi, “First integrals that are polynomial in momenta for a mechanical system on a two-dimensional torus”, Funktsional. Anal. i Prilozhen., 21:4 (1987), 310–312 | DOI

[2] V. V. Kozlov and D. V. Treshchev, “On the integrability of Hamiltonian systems with toral position space”, Math. USSR-Sb., 63:1 (1989), 121–139 | DOI

[3] N. V. Denisova and V. V. Kozlov, “Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space”, Sb. Math., 191:2 (2000), 189–208 | DOI

[4] N. V. Denisova, V. V. Kozlov, and D. V. Treschev, “Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space”, Izv. Math., 76:5 (2012), 907–921 | DOI

[5] A. E. Mironov, “On polynomial integrals of a mechanical system on a two-dimensional torus”, Izv. Math., 74:4 (2010), 805–817 | DOI

[6] N. V. Denisova and V. V. Kozlov, “On the chaotization of the oscillations of coupled pendulums”, Dokl. Phys., 44:7 (1999), 466–468

[7] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, v. I, Gauthier-Villars, Paris, 1892 ; v. II, 1893 (French) ; English transl. H. Poincaré, “New methods of celestial mechanics”, NASA TT F-452, Nat. Aeronaut. Space Admin., Washington, DC 1967, Revised reprint of the 1967 Hist. Modern Phys. Astronom., vol. 13, Amer. Inst. Phys., New York, 1993 | MR | Zbl | MR | Zbl

[8] N. V. Denisova, “On momentum-polynomial integrals of a reversible Hamiltonian system of a certain form”, Selected issues of mathematics and mechanics, Proc. Steklov Inst. Math., 310, 2020, 131–136 | DOI

[9] P. Appell, Traité de mécanique rationnelle, v. I, 5 éd., Gauthier-Villars, Paris, 1926 | Zbl

[10] J. Drach, “Sur l'intégration logique des équations de la dynamique à deux variables: Forces conservatives. Intégrales cubiques. Mouvements dans le plan”, C. R. Acad. Sci. Paris, 200 (1935), 22–26 | Zbl

[11] A. V. Tsyganov, “Degenerate integrable systems on the plane with a cubic integral of motion”, Theoret. and Math. Phys., 124:3 (2000), 1217–1233 | DOI