Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_5_a3, author = {B. O. Volkov and A. N. Pechen}, title = {On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation}, journal = {Izvestiya. Mathematics }, pages = {906--919}, publisher = {mathdoc}, volume = {87}, number = {5}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a3/} }
TY - JOUR AU - B. O. Volkov AU - A. N. Pechen TI - On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation JO - Izvestiya. Mathematics PY - 2023 SP - 906 EP - 919 VL - 87 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a3/ LA - en ID - IM2_2023_87_5_a3 ER -
%0 Journal Article %A B. O. Volkov %A A. N. Pechen %T On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation %J Izvestiya. Mathematics %D 2023 %P 906-919 %V 87 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a3/ %G en %F IM2_2023_87_5_a3
B. O. Volkov; A. N. Pechen. On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 906-919. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a3/
[1] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe”, Eur. Phys. J. D, 69:12 (2015), 279, 24 pp. | DOI
[2] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol., 9 (2022), 19, 60 pp. | DOI
[3] A. G. Butkovskiy and Yu. I. Samoilenko, Control of quantum-mechanical processes and systems, Math. Appl. (Soviet Ser.), 56, Kluwer Acad. Publ., Dordrecht, 1990, xiv+232 pp. | MR | Zbl
[4] D. J. Tannor, Introduction to quantum mechanics: a time dependent perspective, Univ. Science Books, Sausalito, CA, 2007, 662 pp.
[5] V. S. Letokhov, Laser control of atoms and molecules, Oxford Univ. Press, Oxford, 2007, 328 pp.
[6] K. W. Moore, A. Pechen, Xiao-Jiang Feng, J. Dominy, V. J. Beltrani, and H. Rabitz, “Why is chemical synthesis and property optimization easier than expected?”, Phys. Chem. Chem. Phys., 13:21 (2011), 10048–10070 | DOI
[7] C. P. Koch, “Controlling open quantum systems: tools, achievements, and limitations”, J. Phys. Condens. Matter, 28:21 (2016), 213001 | DOI
[8] D. D'Alessandro, Introduction to quantum control and dynamics, Adv. Appl. Math., 2nd ed., CRC Press, Boca Raton, FL, 2021, xvi+400 pp. | DOI | MR | Zbl
[9] H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes”, Science, 303:5666 (2004), 1998–2001 | DOI
[10] Tak-San Ho and H. Rabitz, “Why do effective quantum controls appear easy to find?”, J. Photochem. Photobiol. A, 180:3 (2006), 226–240 | DOI
[11] K. W. Moore, R. Chakrabarti, G. Riviello, and H. Rabitz, “Search complexity and resource scaling for the quantum optimal control of unitary transformations”, Phys. Rev. A, 83:1 (2011), 012326, 15 pp. | DOI
[12] A. N. Pechen and D. J. Tannor, “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402, 3 pp. | DOI
[13] A. Pechen and N. Il'in, “Trap-free manipulation in the Landau–Zener system”, Phys. Rev. A, 86:5 (2012), 052117, 6 pp. | DOI
[14] A. N. Pechen and D. J. Tannor, “Quantum control landscape for a $\Lambda$-atom in the vicinity of second-order traps”, Israel J. Chem., 52:5 (2012), 467–472 | DOI
[15] P. de Fouquieres and S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021, 24 pp. | DOI | MR | Zbl
[16] A. N. Pechen and N. B. Il'in, “Coherent control of a qubit is trap-free”, Proc. Steklov Inst. Math., 285 (2014), 233–240 | DOI
[17] A. N. Pechen and D. J. Tannor, “Control of quantum transmission is trap-free”, Can. J. Chem., 92:2 (2014), 157–159 | DOI
[18] M. Larocca, P. M. Poggi, and D. A. Wisniacki, “Quantum control landscape for a two-level system near the quantum speed limit”, J. Phys. A, 51:38 (2018), 385305, 14 pp. | DOI | MR | Zbl
[19] D. V. Zhdanov, “Comment on 'Control landscapes are almost always trap free: a geometric assessment'”, J. Phys. A, 51:50 (2018), 508001, 8 pp. | DOI | MR | Zbl
[20] B. Russell, Rebing Wu, and H. Rabitz, “Reply to comment on 'Control landscapes are almost always trap free: a geometric assessment'”, J. Phys. A, 51:50 (2018), 508002, 7 pp. | DOI | MR | Zbl
[21] A. N. Pechen and N. B. Il'in, “On extrema of the objective functional for short-time generation of single-qubit quantum gates”, Izv. Math., 80:6 (2016), 1200–1212 | DOI
[22] B. O. Volkov, O. V. Morzhin, and A. N. Pechen, “Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates”, J. Phys. A, 54:21 (2021), 215303, 23 pp. | DOI | MR | Zbl
[23] M. Dalgaard, F. Motzoi, and J. Sherson, “Predicting quantum dynamical cost landscapes with deep learning”, Phys. Rev. A, 105:1 (2022), 012402, 12 pp. | DOI | MR
[24] A. Pechen, D. Prokhorenko, Rebing Wu, and H. Rabitz, “Control landscapes for two-level open quantum systems”, J. Phys. A, 41:4 (2008), 045205, 18 pp. | DOI | MR | Zbl
[25] A. Oza, A. Pechen, J. Dominy, V. Beltrani, K. Moore, and H. Rabitz, “Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution”, J. Phys. A, 42:20 (2009), 205305, 22 pp. | DOI | MR | Zbl
[26] A. Pechen, C. Brif, Rebing Wu, R. Chakrabarti, and H. Rabitz, “General unifying features of controlled quantum phenomena”, Phys. Rev. A, 82:3 (2010), 030101, 4 pp. | DOI
[27] A. Pechen and H. Rabitz, “Unified analysis of terminal-time control in classical and quantum systems”, Europhys. Lett. EPL, 91:6 (2010), 60005, 6 pp. | DOI
[28] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | Zbl
[29] U. Boscain, M. Sigalotti, and D. Sugny, “Introduction to the Pontryagin maximum principle for quantum optimal control”, PRX Quantum, 2:3 (2021), 030203, 31 pp. | DOI
[30] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms”, J. Magn. Reson., 172:2 (2005), 296–305 | DOI
[31] T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke, “Gradient flows for optimization in quantum information and quantum dynamics: foundations and applications”, Rev. Math. Phys., 22:6 (2010), 597–667 | DOI | MR | Zbl
[32] D. J. Tannor, V. Kazakov, and V. Orlov, “Control of photochemical branching: novel procedures for finding optimal pulses and global upper bounds”, Time-dependent quantum molecular dynamics, NATO ASI Ser. B, 299, Springer, New York, 1992, 347–360 | DOI
[33] O. V. Morzhin and A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russian Math. Surveys, 74:5 (2019), 851–908 | DOI
[34] T. Caneva, T. Calarco, and S. Montangero, “Chopped random-basis quantum optimization”, Phys. Rev. A, 84:2 (2011), 022326, 9 pp. | DOI
[35] R. Eitan, M. Mundt, and D. J. Tannor, “Optimal control with accelerated convergence: combining the Krotov and quasi-Newton methods”, Phys. Rev. A, 83:5 (2011), 053426, 10 pp. | DOI
[36] A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl
[37] R. S. Judson and H. Rabitz, “Teaching lasers to control molecules”, Phys. Rev. Lett., 68:10 (1992), 1500–1503 | DOI
[38] Daoyi Dong, Chunlin Chen, Tzyh-Jong Tarn, A. Pechen, and H. Rabitz, “Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning”, IEEE Trans. Systems Man Cybernet. B, 38:4 (2008), 957–962 | DOI
[39] O. V. Morzhin and A. N. Pechen, “Generation of density matrices for two qubits using coherent and incoherent controls”, Lobachevskii J. Math., 42:10 (2021), 2401–2412 | DOI | MR | Zbl
[40] O. V. Morzhin and A. N. Pechen, “On optimization of coherent and incoherent controls for two-level quantum systems”, Izv. RAN. Ser. Mat., 87:5 (2023), 1024–1050 ; arXiv: 2205.02521
[41] V. I. Bogachev and O. G. Smolyanov, Topological vector spaces and their applications, Springer Monogr. Math., Springer, Cham, 2017, x+456 pp. | DOI | MR | Zbl
[42] V. S. Vladimirov, Equations of mathematical physics, 2nd ed., Mir, Moscow, 1984, 464 pp. | MR