On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 906-919.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the detailed structure of quantum control landscape for the problem of single-qubit phase shift gate generation on the fast time scale. In previous works, the absence of traps for this problem was proved on various time scales. A special critical point which was known to exist in quantum control landscapes was shown to be either a saddle or a global extremum, depending on the parameters of the control system. However, in case of a saddle, the numbers of negative and positive eigenvalues of the Hessian at this point and their magnitudes have not been studied. At the same time, these numbers and magnitudes determine the relative ease or difficulty for practical optimization in a vicinity of the critical point. In this work, we compute the numbers of negative and positive eigenvalues of the Hessian at this saddle point and, moreover, give estimates on magnitude of these eigenvalues. We also significantly simplify our previous proof of the theorem about this saddle point of the Hessian (Theorem 3 in [22]).
Keywords: quantum control, qubit, coherent control, phase shift gate.
@article{IM2_2023_87_5_a3,
     author = {B. O. Volkov and A. N. Pechen},
     title = {On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation},
     journal = {Izvestiya. Mathematics },
     pages = {906--919},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a3/}
}
TY  - JOUR
AU  - B. O. Volkov
AU  - A. N. Pechen
TI  - On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 906
EP  - 919
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a3/
LA  - en
ID  - IM2_2023_87_5_a3
ER  - 
%0 Journal Article
%A B. O. Volkov
%A A. N. Pechen
%T On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation
%J Izvestiya. Mathematics 
%D 2023
%P 906-919
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a3/
%G en
%F IM2_2023_87_5_a3
B. O. Volkov; A. N. Pechen. On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 906-919. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a3/

[1] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe”, Eur. Phys. J. D, 69:12 (2015), 279, 24 pp. | DOI

[2] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol., 9 (2022), 19, 60 pp. | DOI

[3] A. G. Butkovskiy and Yu. I. Samoilenko, Control of quantum-mechanical processes and systems, Math. Appl. (Soviet Ser.), 56, Kluwer Acad. Publ., Dordrecht, 1990, xiv+232 pp. | MR | Zbl

[4] D. J. Tannor, Introduction to quantum mechanics: a time dependent perspective, Univ. Science Books, Sausalito, CA, 2007, 662 pp.

[5] V. S. Letokhov, Laser control of atoms and molecules, Oxford Univ. Press, Oxford, 2007, 328 pp.

[6] K. W. Moore, A. Pechen, Xiao-Jiang Feng, J. Dominy, V. J. Beltrani, and H. Rabitz, “Why is chemical synthesis and property optimization easier than expected?”, Phys. Chem. Chem. Phys., 13:21 (2011), 10048–10070 | DOI

[7] C. P. Koch, “Controlling open quantum systems: tools, achievements, and limitations”, J. Phys. Condens. Matter, 28:21 (2016), 213001 | DOI

[8] D. D'Alessandro, Introduction to quantum control and dynamics, Adv. Appl. Math., 2nd ed., CRC Press, Boca Raton, FL, 2021, xvi+400 pp. | DOI | MR | Zbl

[9] H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, “Quantum optimally controlled transition landscapes”, Science, 303:5666 (2004), 1998–2001 | DOI

[10] Tak-San Ho and H. Rabitz, “Why do effective quantum controls appear easy to find?”, J. Photochem. Photobiol. A, 180:3 (2006), 226–240 | DOI

[11] K. W. Moore, R. Chakrabarti, G. Riviello, and H. Rabitz, “Search complexity and resource scaling for the quantum optimal control of unitary transformations”, Phys. Rev. A, 83:1 (2011), 012326, 15 pp. | DOI

[12] A. N. Pechen and D. J. Tannor, “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402, 3 pp. | DOI

[13] A. Pechen and N. Il'in, “Trap-free manipulation in the Landau–Zener system”, Phys. Rev. A, 86:5 (2012), 052117, 6 pp. | DOI

[14] A. N. Pechen and D. J. Tannor, “Quantum control landscape for a $\Lambda$-atom in the vicinity of second-order traps”, Israel J. Chem., 52:5 (2012), 467–472 | DOI

[15] P. de Fouquieres and S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021, 24 pp. | DOI | MR | Zbl

[16] A. N. Pechen and N. B. Il'in, “Coherent control of a qubit is trap-free”, Proc. Steklov Inst. Math., 285 (2014), 233–240 | DOI

[17] A. N. Pechen and D. J. Tannor, “Control of quantum transmission is trap-free”, Can. J. Chem., 92:2 (2014), 157–159 | DOI

[18] M. Larocca, P. M. Poggi, and D. A. Wisniacki, “Quantum control landscape for a two-level system near the quantum speed limit”, J. Phys. A, 51:38 (2018), 385305, 14 pp. | DOI | MR | Zbl

[19] D. V. Zhdanov, “Comment on 'Control landscapes are almost always trap free: a geometric assessment'”, J. Phys. A, 51:50 (2018), 508001, 8 pp. | DOI | MR | Zbl

[20] B. Russell, Rebing Wu, and H. Rabitz, “Reply to comment on 'Control landscapes are almost always trap free: a geometric assessment'”, J. Phys. A, 51:50 (2018), 508002, 7 pp. | DOI | MR | Zbl

[21] A. N. Pechen and N. B. Il'in, “On extrema of the objective functional for short-time generation of single-qubit quantum gates”, Izv. Math., 80:6 (2016), 1200–1212 | DOI

[22] B. O. Volkov, O. V. Morzhin, and A. N. Pechen, “Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates”, J. Phys. A, 54:21 (2021), 215303, 23 pp. | DOI | MR | Zbl

[23] M. Dalgaard, F. Motzoi, and J. Sherson, “Predicting quantum dynamical cost landscapes with deep learning”, Phys. Rev. A, 105:1 (2022), 012402, 12 pp. | DOI | MR

[24] A. Pechen, D. Prokhorenko, Rebing Wu, and H. Rabitz, “Control landscapes for two-level open quantum systems”, J. Phys. A, 41:4 (2008), 045205, 18 pp. | DOI | MR | Zbl

[25] A. Oza, A. Pechen, J. Dominy, V. Beltrani, K. Moore, and H. Rabitz, “Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution”, J. Phys. A, 42:20 (2009), 205305, 22 pp. | DOI | MR | Zbl

[26] A. Pechen, C. Brif, Rebing Wu, R. Chakrabarti, and H. Rabitz, “General unifying features of controlled quantum phenomena”, Phys. Rev. A, 82:3 (2010), 030101, 4 pp. | DOI

[27] A. Pechen and H. Rabitz, “Unified analysis of terminal-time control in classical and quantum systems”, Europhys. Lett. EPL, 91:6 (2010), 60005, 6 pp. | DOI

[28] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | Zbl

[29] U. Boscain, M. Sigalotti, and D. Sugny, “Introduction to the Pontryagin maximum principle for quantum optimal control”, PRX Quantum, 2:3 (2021), 030203, 31 pp. | DOI

[30] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms”, J. Magn. Reson., 172:2 (2005), 296–305 | DOI

[31] T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke, “Gradient flows for optimization in quantum information and quantum dynamics: foundations and applications”, Rev. Math. Phys., 22:6 (2010), 597–667 | DOI | MR | Zbl

[32] D. J. Tannor, V. Kazakov, and V. Orlov, “Control of photochemical branching: novel procedures for finding optimal pulses and global upper bounds”, Time-dependent quantum molecular dynamics, NATO ASI Ser. B, 299, Springer, New York, 1992, 347–360 | DOI

[33] O. V. Morzhin and A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russian Math. Surveys, 74:5 (2019), 851–908 | DOI

[34] T. Caneva, T. Calarco, and S. Montangero, “Chopped random-basis quantum optimization”, Phys. Rev. A, 84:2 (2011), 022326, 9 pp. | DOI

[35] R. Eitan, M. Mundt, and D. J. Tannor, “Optimal control with accelerated convergence: combining the Krotov and quasi-Newton methods”, Phys. Rev. A, 83:5 (2011), 053426, 10 pp. | DOI

[36] A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl

[37] R. S. Judson and H. Rabitz, “Teaching lasers to control molecules”, Phys. Rev. Lett., 68:10 (1992), 1500–1503 | DOI

[38] Daoyi Dong, Chunlin Chen, Tzyh-Jong Tarn, A. Pechen, and H. Rabitz, “Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning”, IEEE Trans. Systems Man Cybernet. B, 38:4 (2008), 957–962 | DOI

[39] O. V. Morzhin and A. N. Pechen, “Generation of density matrices for two qubits using coherent and incoherent controls”, Lobachevskii J. Math., 42:10 (2021), 2401–2412 | DOI | MR | Zbl

[40] O. V. Morzhin and A. N. Pechen, “On optimization of coherent and incoherent controls for two-level quantum systems”, Izv. RAN. Ser. Mat., 87:5 (2023), 1024–1050 ; arXiv: 2205.02521

[41] V. I. Bogachev and O. G. Smolyanov, Topological vector spaces and their applications, Springer Monogr. Math., Springer, Cham, 2017, x+456 pp. | DOI | MR | Zbl

[42] V. S. Vladimirov, Equations of mathematical physics, 2nd ed., Mir, Moscow, 1984, 464 pp. | MR