On weak solutions of boundary value problems for some general differential equations
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 891-905.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study general settings of the Dirichlet problem, the Neumann problem, and other boundary value problems for equations and systems of the form $\mathcal{L}^+ A\mathcal{L}u=f$ with general (matrix, generally speaking) differential operation $\mathcal{L}$ and some linear or non-linear operator $A$ acting in $L^k_2(\Omega)$-spaces. For these boundary value problems, results on well-posedness, existence and uniqueness of a weak solution are obtained. As an operator $A$, we consider Nemytskii and integral operators. The case of operators involving lower-order derivatives is also studied.
Keywords: partial differential equation, general theory of boundary value problems, boundary value problem, well-posedness, weak solution.
@article{IM2_2023_87_5_a2,
     author = {V. P. Burskii},
     title = {On weak solutions of boundary value problems for some general differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {891--905},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a2/}
}
TY  - JOUR
AU  - V. P. Burskii
TI  - On weak solutions of boundary value problems for some general differential equations
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 891
EP  - 905
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a2/
LA  - en
ID  - IM2_2023_87_5_a2
ER  - 
%0 Journal Article
%A V. P. Burskii
%T On weak solutions of boundary value problems for some general differential equations
%J Izvestiya. Mathematics 
%D 2023
%P 891-905
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a2/
%G en
%F IM2_2023_87_5_a2
V. P. Burskii. On weak solutions of boundary value problems for some general differential equations. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 891-905. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a2/

[1] M. I. Vishik, “On general boundary value problems for elliptic differential equations”, Amer. Math. Soc. Transl. Ser. 2, 24, Amer. Math. Soc., Providence, RI, 1963, 107–172 | DOI

[2] L. Hörmander, “On the theory of general partial differential operators”, Acta Math., 94 (1955), 161–248 | DOI | MR | Zbl

[3] Ya. B. Lopatinskiĭ, “A method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations”, Amer. Math. Soc. Transl. Ser. 2, 89, Amer. Math. Soc., Providence, RI, 1970, 149–183 | DOI

[4] M. S. Agranovich, “Partial differential equations with constant coefficients”, Russian Math. Surveys, 16:2 (1961), 23–90 | DOI

[5] Yu. M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators, Transl. Math. Monogr., 17, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl

[6] A. A. Dezin, Partial differential equations. An introduction to a general theory of linear boundary value problems, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl

[7] I. G. Petrovskii, “On some problems of the theory of partial differential equations”, Uspekhi Mat. Nauk, 1:3-4(13-14) (1946), 44–70 | MR | Zbl

[8] A. V. Bitsadze, Some classes of partial differential equations, Adv. Stud. Contemp. Math., 4, Gordon and Breach Sci. Publ., New York, 1988 | MR | Zbl

[9] A. P. Soldatov, “Singular integral operators and elliptic boundary-value problems. I”, J. Math. Sci. (N.Y.), 245:6 (2020), 695–891 | DOI

[10] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985 | DOI | MR | Zbl

[11] V. P. Burskii, “Generalized solutions of the linear boundary value problems”, Russian Math. (Iz. VUZ), 63:12 (2019), 21–31 | DOI

[12] V. P. Burskii, “Generalized solutions of boundary-value problems for differential equations of general form”, Russian Math. Surveys, 53:4 (1998), 864–865 | DOI

[13] V. P. Burskiĭ, “Boundary properties of solutions of differential equations and general boundary-value problems”, Trans. Moscow Math. Soc., 2007 (2007), 163–200 | DOI

[14] V. P. Burskii, “On well-posedness of boundary value problems for some class of general PDEs in a generalized setting”, Funct. Differ. Equ., 8:1-2 (2001), 89–100 | MR | Zbl

[15] V. P. Burskii, Methods for investigation of boundary value problems for general differential equations, Naukova Dumka, Kiev, 2002 (Russian)

[16] S. MacLane, Homology, Grundlehren Math. Wiss., 114, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl

[17] H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Math. Lehrbucher und Monogr., 38, Akademie-Verlag, Berlin, 1974 | MR | Zbl

[18] I. V. Skrypnik, Nonlinear higher order elliptic equations, Naukova Dumka, Kiev, 1973 (Russian) | MR | Zbl

[19] J.-L. Lions and E. Magenes, Problèmes aux limites non homogénes et applications, v. 1, 2, Travaux et Recherches Mathématiques, 17, 18, Dunod, Paris, 1968 | MR | MR | Zbl