On weak solutions of boundary value problems for some general differential equations
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 891-905

Voir la notice de l'article provenant de la source Math-Net.Ru

We study general settings of the Dirichlet problem, the Neumann problem, and other boundary value problems for equations and systems of the form $\mathcal{L}^+ A\mathcal{L}u=f$ with general (matrix, generally speaking) differential operation $\mathcal{L}$ and some linear or non-linear operator $A$ acting in $L^k_2(\Omega)$-spaces. For these boundary value problems, results on well-posedness, existence and uniqueness of a weak solution are obtained. As an operator $A$, we consider Nemytskii and integral operators. The case of operators involving lower-order derivatives is also studied.
Keywords: partial differential equation, general theory of boundary value problems, boundary value problem, well-posedness, weak solution.
@article{IM2_2023_87_5_a2,
     author = {V. P. Burskii},
     title = {On weak solutions of boundary value problems for some general differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {891--905},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a2/}
}
TY  - JOUR
AU  - V. P. Burskii
TI  - On weak solutions of boundary value problems for some general differential equations
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 891
EP  - 905
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a2/
LA  - en
ID  - IM2_2023_87_5_a2
ER  - 
%0 Journal Article
%A V. P. Burskii
%T On weak solutions of boundary value problems for some general differential equations
%J Izvestiya. Mathematics 
%D 2023
%P 891-905
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a2/
%G en
%F IM2_2023_87_5_a2
V. P. Burskii. On weak solutions of boundary value problems for some general differential equations. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 891-905. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a2/