On optimization of coherent and incoherent controls for two-level quantum systems
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 1024-1050.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers some control problems for closed and open two-level quantum systems. The closed system's dynamics is governed by the Schrödinger equation with coherent control. The open system dynamics is governed by the Gorini–Kossakowski–Sudarshan–Lindblad master equation whose Hamiltonian depends on coherent control and superoperator of dissipation depends on incoherent control. For the closed system, we consider the problem of generation of the phase shift gate for some values of phases and final times for which we numerically show that zero coherent control, which is a stationary point of the objective functional, is not optimal; it gives an example of subtle point for practical solving quantum control problems. The two-stage method, which was developed in [48] for generic $N$-level open quantum systems for approximate generation of a given target density matrix, is modified here for the case of two-level systems. We modify the first (“incoherent”) stage by numerically optimizing piecewise constant incoherent control instead of using constant incoherent control analytically computed using eigenvalues of the target density matrix. Exact analytical formulas are derived for the system state evolution, the objective functions and their gradients for the modified first stage. These formulas are then applied in the two-step gradient projection method. The numerical simulations show that the modified first stage duration can be significantly less than the unmodified first stage duration, but at the cost of performing optimization in the class of piecewise constant controls.
Keywords: quantum control, two-level quantum system, coherent control, incoherent control.
@article{IM2_2023_87_5_a10,
     author = {O. V. Morzhin and A. N. Pechen},
     title = {On optimization of coherent and incoherent controls for two-level quantum systems},
     journal = {Izvestiya. Mathematics },
     pages = {1024--1050},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a10/}
}
TY  - JOUR
AU  - O. V. Morzhin
AU  - A. N. Pechen
TI  - On optimization of coherent and incoherent controls for two-level quantum systems
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1024
EP  - 1050
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a10/
LA  - en
ID  - IM2_2023_87_5_a10
ER  - 
%0 Journal Article
%A O. V. Morzhin
%A A. N. Pechen
%T On optimization of coherent and incoherent controls for two-level quantum systems
%J Izvestiya. Mathematics 
%D 2023
%P 1024-1050
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a10/
%G en
%F IM2_2023_87_5_a10
O. V. Morzhin; A. N. Pechen. On optimization of coherent and incoherent controls for two-level quantum systems. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 1024-1050. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a10/

[1] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol., 9 (2022), 19 | DOI

[2] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe”, Eur. Phys. J. D, 69:12 (2015), 279 | DOI

[3] A. G. Butkovskiy and Yu. I. Samoilenko, Control of quantum-mechanical processes and systems, Math. Appl. (Soviet Ser.), 56, Kluwer Acad. Publ., Dordrecht, 1990 | MR | Zbl

[4] D. J. Tannor, Introduction to quantum mechanics: a time dependent perspective, Univ. Sci. Books, Sausalito, CA, 2007 https://uscibooks.aip.org/books/introduction-to-quantum-mechanics-a-time-dependent-perspective/

[5] V. S. Letokhov, Laser control of atoms and molecules, Oxford Univ. Press, Oxford, 2007 https://global.oup.com/academic/product/laser-control-of-atoms-andmolecules-9780199697137

[6] H. M. Wiseman and G. J. Milburn, Quantum measurement and control, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR | Zbl

[7] C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future”, New J. Phys., 12:7 (2010), 075008 | DOI | Zbl

[8] K. W. Moore, A. Pechen, Xiao-Jiang Feng, J. Dominy, V. Beltrani, and H. Rabitz, “Universal characteristics of chemical synthesis and property optimization”, Chem. Sci., 2:3 (2011), 417–424 | DOI

[9] J. E. Gough, “Principles and applications of quantum control engineering”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370:1979 (2012), 5241–5258 | DOI | MR | Zbl

[10] Xiaojiang Feng, A. Pechen, A. Jha, Rebing Wu, and H. Rabitz, “Global optimality of fitness landscapes in evolution”, Chem. Sci., 3:3 (2012), 900–906 | DOI

[11] C. P. Koch, “Controlling open quantum systems: tools, achievements, and limitations”, J. Phys. Condens. Matter, 28:21 (2016), 213001 | DOI

[12] D. D'Alessandro, Introduction to quantum control and dynamics, Adv. Appl. Math., 2nd ed., CRC Press, Boca Raton, FL, 2021 | DOI | MR | Zbl

[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1961 | MR | Zbl

[14] U. Boscain, M. Sigalotti, and D. Sugny, “Introduction to the Pontryagin maximum principle for quantum optimal control”, PRX Quantum, 2:3 (2021), 030203 | DOI

[15] A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[16] T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke, “Gradient flows for optimization in quantum information and quantum dynamics: foundations and applications”, Rev. Math. Phys., 22:6 (2010), 597–667 | DOI | MR | Zbl

[17] O. V. Morzhin and A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russian Math. Surveys, 74:5 (2019), 851–908 | DOI

[18] C. Altafini, “Controllability of open quantum systems: the two level case”, 2003 IEEE International Workshop on Workload Characterization (St. Petersburg 2003), v. 3, IEEE, 2003, 710–714 | DOI

[19] J. Gough, V. P. Belavkin, and O. G. Smolyanov, “Hamilton–Jacobi–Bellman equations for quantum optimal feedback control”, J. Opt. B Quantum Semiclass. Opt., 7:10 (2005), S237–S244 | DOI | MR

[20] B. Bonnard, M. Chyba, and D. Sugny, “Time-minimal control of dissipative two-level quantum systems: the generic case”, IEEE Trans. Automat. Control, 54:11 (2009), 2598–2610 | DOI | MR | Zbl

[21] D. Stefanatos, “Optimal design of minimum-energy pulses for Bloch equations in the case of dominant transverse relaxation”, Phys. Rev. A, 80:4 (2009), 045401 | DOI

[22] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, “Optimal control at the quantum speed limit”, Phys. Rev. Lett., 103:24 (2009), 240501 | DOI

[23] G. C. Hegerfeldt, “Driving at the quantum speed limit: optimal control of a two-level system”, Phys. Rev. Lett., 111:26 (2013), 260501 | DOI

[24] V. E. Arkhincheev, “Control of quantum particle dynamics by impulses of magnetic field”, Nonlinear Dynam., 87:3 (2017), 1873–1877 | DOI

[25] V. S. Vladimirov, “On the integro-differential equation of particle transport”, Izv. Akad. Nauk SSSR Ser. Mat., 21:5 (1957), 681–710 | MR | Zbl

[26] V. S. Vladimirov, “Equation of transport of particles”, Izv. Akad. Nauk SSSR Ser. Mat., 22:4 (1958), 475–490 | MR | Zbl

[27] Xiaozhen Ge, Rebing Wu, and H. Rabitz, “Optimization landscape of quantum control systems”, Complex System Model. Simulation, 1:2 (2021), 77–90 | DOI

[28] A. N. Pechen and D. J. Tannor, “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI

[29] A. N. Pechen and N. B. Il'in, “Coherent control of a qubit is trap-free”, Proc. Steklov Inst. Math., 285 (2014), 233–240 | DOI

[30] A. N. Pechen and N. B. Il'in, “On extrema of the objective functional for short-time generation of single-qubit quantum gates”, Izv. Math., 80:6 (2016), 1200–1212 | DOI

[31] A. Pechen and N. Il'in, “Control landscape for ultrafast manipulation by a qubit”, J. Phys. A, 50:7 (2017), 075301 | DOI | MR | Zbl

[32] B. O. Volkov, O. V. Morzhin, and A. N. Pechen, “Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates”, J. Phys. A, 54:21 (2021), 215303 | DOI | MR | Zbl

[33] B. O. Volkov and A. N. Pechen, “On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation”, Izv. Math., 87:5 (2023), 906–919; (2022), arXiv: 2204.13671

[34] P. de Fouquieres and S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021 | DOI | MR | Zbl

[35] M. Larocca, P. M. Poggi, and D. A. Wisniacki, “Quantum control landscape for a two-level system near the quantum speed limit”, J. Phys. A, 51:38 (2018), 385305 | DOI | MR | Zbl

[36] D. V. Zhdanov, “Comment on 'Control landscapes are almost always trap free: a geometric assessment'”, J. Phys. A, 51:50 (2018), 508001 | DOI | MR | Zbl

[37] B. Russell, Rebing Wu, and H. Rabitz, “Reply to comment on 'Control landscapes are almost always trap free: a geometric assessment'”, J. Phys. A, 51:50 (2018), 508002 | DOI | MR | Zbl

[38] A. Pechen, C. Brif, Rebing Wu, R. Chakrabarti, and H. Rabitz, “General unifying features of controlled quantum phenomena”, Phys. Rev. A, 82:3 (2010), 030101(R) | DOI

[39] A. Pechen and H. Rabitz, “Unified analysis of terminal-time control in classical and quantum systems”, Europhys. Lett. EPL, 91:6 (2010), 60005 | DOI

[40] M. Dalgaard, F. Motzoi, and J. Sherson, “Predicting quantum dynamical cost landscapes with deep learning”, Phys. Rev. A, 105:1 (2022), 012402 | DOI | MR

[41] A. Pechen, D. Prokhorenko, Rebing Wu, and H. Rabitz, “Control landscapes for two-level open quantum systems”, J. Phys. A, 41:4 (2008), 045205 | DOI | MR | Zbl

[42] A. Oza, A. Pechen, J. Dominy, V. Beltrani, K. Moore, and H. Rabitz, “Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution”, J. Phys. A, 42:20 (2009), 205305 | DOI | MR | Zbl

[43] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms”, J. Magn. Reson., 172:2 (2005), 296–305 | DOI

[44] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optim., 11:4 (1997), 341–359 | DOI | MR | Zbl

[45] C. Tsallis and D. A. Stariolo, “Generalized simulated annealing”, Phys. A, 233:1-2 (1996), 395–406 | DOI

[46] Y. Xiang and X. G. Gong, “Efficiency of generalized simulated annealing”, Phys. Rev. E, 62:3 (2000), 4473–4476 | DOI

[47] A. Pechen and H. Rabitz, “Teaching the environment to control quantum systems”, Phys. Rev. A, 73:6 (2006), 062102 | DOI

[48] A. Pechen, “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84:4 (2011), 042106 | DOI

[49] L. Accardi, Yun Gang Lu, and I. Volovich, Quantum theory and its stochastic limit, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[50] R. Dümcke, “The low density limit for an $N$-level system interacting with a free Bose or Fermi gas”, Comm. Math. Phys., 97:3 (1985), 331–359 | DOI | MR | Zbl

[51] L. Accardi, A. N. Pechen, and I. V. Volovich, “Quantum stochastic equation for the low density limit”, J. Phys. A, 35:23 (2002), 4889–4902 | DOI | MR | Zbl

[52] A. N. Pechen, “Quantum stochastic equation for a test particle interacting with a dilute Bose gas”, J. Math. Phys., 45:1 (2004), 400–417 | DOI | MR | Zbl

[53] A. N. Pechen, “The multitime correlation functions, free white noise, and the generalized Poisson statistics in the low density limit”, J. Math. Phys., 47:3 (2006), 033507 | DOI | MR | Zbl

[54] A. N. Pechen and I. V. Volovich, “Quantum multipole noise and generalized quantum stochastic equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:4 (2002), 441–464 | DOI | MR | Zbl

[55] V. V. Kozlov and O. G. Smolyanov, “Wigner function and diffusion in a collision-free medium of quantum particles”, Theory Probab. Appl., 51:1 (2007), 168–181 | DOI

[56] L. Lokutsievskiy and A. Pechen, “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A, 54:39 (2021), 395304 | DOI | MR | Zbl

[57] O. V. Morzhin and A. N. Pechen, “Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls”, Internat. J. Theoret. Phys., 60:2 (2021), 576–584 | DOI | MR | Zbl

[58] O. V. Morzhin and A. N. Pechen, “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math., 40:10 (2019), 1532–1548 | DOI | MR | Zbl

[59] O. V. Morzhin and A. N. Pechen, “Maximization of the Uhlmann–Jozsa fidelity for an open two-level quantum system with coherent and incoherent controls”, Phys. Particles Nuclei, 51:4 (2020), 464–469 | DOI

[60] O. V. Morzhin and A. N. Pechen, “On reachable and controllability sets for minimum-time control of an open two-level quantum system”, Proc. Steklov Inst. Math., 313 (2021), 149–164 | DOI

[61] V. N. Petruhanov and A. N. Pechen, “Optimal control for state preparation in two-qubit open quantum systems driven by coherent and incoherent controls via GRAPE approach”, Internat. J. Modern Phys. A, 37:20-21 (2022), 2243017 | DOI | MR

[62] A. N. Pechen, S. Borisenok, and A. L. Fradkov, “Energy control in a quantum oscillator using coherent control and engineered environment”, Chaos Solitons Fractals, 164 (2022), 112687 | DOI | MR

[63] Md. Qutubuddin and K. E. Dorfman, “Incoherent control of optical signals: quantum-heat-engine approach”, Phys. Rev. Res., 3:2 (2021), 023029 | DOI

[64] A. S. Antipin, “Minimization of convex functions on convex sets by means of differential equations”, Differ. Equ., 30:9 (1994), 1365–1375

[65] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods”, U.S.S.R. Comput. Math. Math. Phys., 4:5 (1964), 1–17 | DOI

[66] B. T. Polyak, Introduction to optimization, Transl. Ser. Math. Eng., Optimization Software, Inc., Publications Division, New York, 1987 | MR

[67] A. Garon, S. J. Glaser, and D. Sugny, “Time-optimal control of $\operatorname{SU}(2)$ quantum operations”, Phys. Rev. A, 88:4 (2013), 043422 | DOI

[68] V. F. Demyanov and A. M. Rubinov, Approximate methods in optimization problems, Modern Analytic and Computational Methods in Science and Mathematics, 32, American Elsevier Publishing Co., Inc., New York, 1970 | MR | Zbl

[69] F. P. Vasil'ev, Methods of optimization, vol. 2, MCCME, Moscow, 2011 (Russian) https://biblio.mccme.ru/node/2408

[70] V. E. Zobov and V. P. Shauro, “Effect of a phase factor on the minimum time of a quantum gate”, JETP, 118:1 (2014), 18–26 | DOI

[71] V. V. Kozlov and O. G. Smolyanov, “Mathematical structures related to the description of quantum states”, Dokl. Math., 104:3 (2021), 365–368 | DOI

[72] V. K. Romanko, Course of difference equations, Fizmatlit, Moscow, 2012 (Russian) http://www.fml.ru/book/showbook/1483