Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_5_a10, author = {O. V. Morzhin and A. N. Pechen}, title = {On optimization of coherent and incoherent controls for two-level quantum systems}, journal = {Izvestiya. Mathematics }, pages = {1024--1050}, publisher = {mathdoc}, volume = {87}, number = {5}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a10/} }
TY - JOUR AU - O. V. Morzhin AU - A. N. Pechen TI - On optimization of coherent and incoherent controls for two-level quantum systems JO - Izvestiya. Mathematics PY - 2023 SP - 1024 EP - 1050 VL - 87 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a10/ LA - en ID - IM2_2023_87_5_a10 ER -
O. V. Morzhin; A. N. Pechen. On optimization of coherent and incoherent controls for two-level quantum systems. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 1024-1050. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a10/
[1] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe”, EPJ Quantum Technol., 9 (2022), 19 | DOI
[2] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe”, Eur. Phys. J. D, 69:12 (2015), 279 | DOI
[3] A. G. Butkovskiy and Yu. I. Samoilenko, Control of quantum-mechanical processes and systems, Math. Appl. (Soviet Ser.), 56, Kluwer Acad. Publ., Dordrecht, 1990 | MR | Zbl
[4] D. J. Tannor, Introduction to quantum mechanics: a time dependent perspective, Univ. Sci. Books, Sausalito, CA, 2007 https://uscibooks.aip.org/books/introduction-to-quantum-mechanics-a-time-dependent-perspective/
[5] V. S. Letokhov, Laser control of atoms and molecules, Oxford Univ. Press, Oxford, 2007 https://global.oup.com/academic/product/laser-control-of-atoms-andmolecules-9780199697137
[6] H. M. Wiseman and G. J. Milburn, Quantum measurement and control, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR | Zbl
[7] C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future”, New J. Phys., 12:7 (2010), 075008 | DOI | Zbl
[8] K. W. Moore, A. Pechen, Xiao-Jiang Feng, J. Dominy, V. Beltrani, and H. Rabitz, “Universal characteristics of chemical synthesis and property optimization”, Chem. Sci., 2:3 (2011), 417–424 | DOI
[9] J. E. Gough, “Principles and applications of quantum control engineering”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370:1979 (2012), 5241–5258 | DOI | MR | Zbl
[10] Xiaojiang Feng, A. Pechen, A. Jha, Rebing Wu, and H. Rabitz, “Global optimality of fitness landscapes in evolution”, Chem. Sci., 3:3 (2012), 900–906 | DOI
[11] C. P. Koch, “Controlling open quantum systems: tools, achievements, and limitations”, J. Phys. Condens. Matter, 28:21 (2016), 213001 | DOI
[12] D. D'Alessandro, Introduction to quantum control and dynamics, Adv. Appl. Math., 2nd ed., CRC Press, Boca Raton, FL, 2021 | DOI | MR | Zbl
[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1961 | MR | Zbl
[14] U. Boscain, M. Sigalotti, and D. Sugny, “Introduction to the Pontryagin maximum principle for quantum optimal control”, PRX Quantum, 2:3 (2021), 030203 | DOI
[15] A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl
[16] T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke, “Gradient flows for optimization in quantum information and quantum dynamics: foundations and applications”, Rev. Math. Phys., 22:6 (2010), 597–667 | DOI | MR | Zbl
[17] O. V. Morzhin and A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russian Math. Surveys, 74:5 (2019), 851–908 | DOI
[18] C. Altafini, “Controllability of open quantum systems: the two level case”, 2003 IEEE International Workshop on Workload Characterization (St. Petersburg 2003), v. 3, IEEE, 2003, 710–714 | DOI
[19] J. Gough, V. P. Belavkin, and O. G. Smolyanov, “Hamilton–Jacobi–Bellman equations for quantum optimal feedback control”, J. Opt. B Quantum Semiclass. Opt., 7:10 (2005), S237–S244 | DOI | MR
[20] B. Bonnard, M. Chyba, and D. Sugny, “Time-minimal control of dissipative two-level quantum systems: the generic case”, IEEE Trans. Automat. Control, 54:11 (2009), 2598–2610 | DOI | MR | Zbl
[21] D. Stefanatos, “Optimal design of minimum-energy pulses for Bloch equations in the case of dominant transverse relaxation”, Phys. Rev. A, 80:4 (2009), 045401 | DOI
[22] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, “Optimal control at the quantum speed limit”, Phys. Rev. Lett., 103:24 (2009), 240501 | DOI
[23] G. C. Hegerfeldt, “Driving at the quantum speed limit: optimal control of a two-level system”, Phys. Rev. Lett., 111:26 (2013), 260501 | DOI
[24] V. E. Arkhincheev, “Control of quantum particle dynamics by impulses of magnetic field”, Nonlinear Dynam., 87:3 (2017), 1873–1877 | DOI
[25] V. S. Vladimirov, “On the integro-differential equation of particle transport”, Izv. Akad. Nauk SSSR Ser. Mat., 21:5 (1957), 681–710 | MR | Zbl
[26] V. S. Vladimirov, “Equation of transport of particles”, Izv. Akad. Nauk SSSR Ser. Mat., 22:4 (1958), 475–490 | MR | Zbl
[27] Xiaozhen Ge, Rebing Wu, and H. Rabitz, “Optimization landscape of quantum control systems”, Complex System Model. Simulation, 1:2 (2021), 77–90 | DOI
[28] A. N. Pechen and D. J. Tannor, “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402 | DOI
[29] A. N. Pechen and N. B. Il'in, “Coherent control of a qubit is trap-free”, Proc. Steklov Inst. Math., 285 (2014), 233–240 | DOI
[30] A. N. Pechen and N. B. Il'in, “On extrema of the objective functional for short-time generation of single-qubit quantum gates”, Izv. Math., 80:6 (2016), 1200–1212 | DOI
[31] A. Pechen and N. Il'in, “Control landscape for ultrafast manipulation by a qubit”, J. Phys. A, 50:7 (2017), 075301 | DOI | MR | Zbl
[32] B. O. Volkov, O. V. Morzhin, and A. N. Pechen, “Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates”, J. Phys. A, 54:21 (2021), 215303 | DOI | MR | Zbl
[33] B. O. Volkov and A. N. Pechen, “On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation”, Izv. Math., 87:5 (2023), 906–919; (2022), arXiv: 2204.13671
[34] P. de Fouquieres and S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021 | DOI | MR | Zbl
[35] M. Larocca, P. M. Poggi, and D. A. Wisniacki, “Quantum control landscape for a two-level system near the quantum speed limit”, J. Phys. A, 51:38 (2018), 385305 | DOI | MR | Zbl
[36] D. V. Zhdanov, “Comment on 'Control landscapes are almost always trap free: a geometric assessment'”, J. Phys. A, 51:50 (2018), 508001 | DOI | MR | Zbl
[37] B. Russell, Rebing Wu, and H. Rabitz, “Reply to comment on 'Control landscapes are almost always trap free: a geometric assessment'”, J. Phys. A, 51:50 (2018), 508002 | DOI | MR | Zbl
[38] A. Pechen, C. Brif, Rebing Wu, R. Chakrabarti, and H. Rabitz, “General unifying features of controlled quantum phenomena”, Phys. Rev. A, 82:3 (2010), 030101(R) | DOI
[39] A. Pechen and H. Rabitz, “Unified analysis of terminal-time control in classical and quantum systems”, Europhys. Lett. EPL, 91:6 (2010), 60005 | DOI
[40] M. Dalgaard, F. Motzoi, and J. Sherson, “Predicting quantum dynamical cost landscapes with deep learning”, Phys. Rev. A, 105:1 (2022), 012402 | DOI | MR
[41] A. Pechen, D. Prokhorenko, Rebing Wu, and H. Rabitz, “Control landscapes for two-level open quantum systems”, J. Phys. A, 41:4 (2008), 045205 | DOI | MR | Zbl
[42] A. Oza, A. Pechen, J. Dominy, V. Beltrani, K. Moore, and H. Rabitz, “Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution”, J. Phys. A, 42:20 (2009), 205305 | DOI | MR | Zbl
[43] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms”, J. Magn. Reson., 172:2 (2005), 296–305 | DOI
[44] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optim., 11:4 (1997), 341–359 | DOI | MR | Zbl
[45] C. Tsallis and D. A. Stariolo, “Generalized simulated annealing”, Phys. A, 233:1-2 (1996), 395–406 | DOI
[46] Y. Xiang and X. G. Gong, “Efficiency of generalized simulated annealing”, Phys. Rev. E, 62:3 (2000), 4473–4476 | DOI
[47] A. Pechen and H. Rabitz, “Teaching the environment to control quantum systems”, Phys. Rev. A, 73:6 (2006), 062102 | DOI
[48] A. Pechen, “Engineering arbitrary pure and mixed quantum states”, Phys. Rev. A, 84:4 (2011), 042106 | DOI
[49] L. Accardi, Yun Gang Lu, and I. Volovich, Quantum theory and its stochastic limit, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[50] R. Dümcke, “The low density limit for an $N$-level system interacting with a free Bose or Fermi gas”, Comm. Math. Phys., 97:3 (1985), 331–359 | DOI | MR | Zbl
[51] L. Accardi, A. N. Pechen, and I. V. Volovich, “Quantum stochastic equation for the low density limit”, J. Phys. A, 35:23 (2002), 4889–4902 | DOI | MR | Zbl
[52] A. N. Pechen, “Quantum stochastic equation for a test particle interacting with a dilute Bose gas”, J. Math. Phys., 45:1 (2004), 400–417 | DOI | MR | Zbl
[53] A. N. Pechen, “The multitime correlation functions, free white noise, and the generalized Poisson statistics in the low density limit”, J. Math. Phys., 47:3 (2006), 033507 | DOI | MR | Zbl
[54] A. N. Pechen and I. V. Volovich, “Quantum multipole noise and generalized quantum stochastic equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:4 (2002), 441–464 | DOI | MR | Zbl
[55] V. V. Kozlov and O. G. Smolyanov, “Wigner function and diffusion in a collision-free medium of quantum particles”, Theory Probab. Appl., 51:1 (2007), 168–181 | DOI
[56] L. Lokutsievskiy and A. Pechen, “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A, 54:39 (2021), 395304 | DOI | MR | Zbl
[57] O. V. Morzhin and A. N. Pechen, “Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls”, Internat. J. Theoret. Phys., 60:2 (2021), 576–584 | DOI | MR | Zbl
[58] O. V. Morzhin and A. N. Pechen, “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math., 40:10 (2019), 1532–1548 | DOI | MR | Zbl
[59] O. V. Morzhin and A. N. Pechen, “Maximization of the Uhlmann–Jozsa fidelity for an open two-level quantum system with coherent and incoherent controls”, Phys. Particles Nuclei, 51:4 (2020), 464–469 | DOI
[60] O. V. Morzhin and A. N. Pechen, “On reachable and controllability sets for minimum-time control of an open two-level quantum system”, Proc. Steklov Inst. Math., 313 (2021), 149–164 | DOI
[61] V. N. Petruhanov and A. N. Pechen, “Optimal control for state preparation in two-qubit open quantum systems driven by coherent and incoherent controls via GRAPE approach”, Internat. J. Modern Phys. A, 37:20-21 (2022), 2243017 | DOI | MR
[62] A. N. Pechen, S. Borisenok, and A. L. Fradkov, “Energy control in a quantum oscillator using coherent control and engineered environment”, Chaos Solitons Fractals, 164 (2022), 112687 | DOI | MR
[63] Md. Qutubuddin and K. E. Dorfman, “Incoherent control of optical signals: quantum-heat-engine approach”, Phys. Rev. Res., 3:2 (2021), 023029 | DOI
[64] A. S. Antipin, “Minimization of convex functions on convex sets by means of differential equations”, Differ. Equ., 30:9 (1994), 1365–1375
[65] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods”, U.S.S.R. Comput. Math. Math. Phys., 4:5 (1964), 1–17 | DOI
[66] B. T. Polyak, Introduction to optimization, Transl. Ser. Math. Eng., Optimization Software, Inc., Publications Division, New York, 1987 | MR
[67] A. Garon, S. J. Glaser, and D. Sugny, “Time-optimal control of $\operatorname{SU}(2)$ quantum operations”, Phys. Rev. A, 88:4 (2013), 043422 | DOI
[68] V. F. Demyanov and A. M. Rubinov, Approximate methods in optimization problems, Modern Analytic and Computational Methods in Science and Mathematics, 32, American Elsevier Publishing Co., Inc., New York, 1970 | MR | Zbl
[69] F. P. Vasil'ev, Methods of optimization, vol. 2, MCCME, Moscow, 2011 (Russian) https://biblio.mccme.ru/node/2408
[70] V. E. Zobov and V. P. Shauro, “Effect of a phase factor on the minimum time of a quantum gate”, JETP, 118:1 (2014), 18–26 | DOI
[71] V. V. Kozlov and O. G. Smolyanov, “Mathematical structures related to the description of quantum states”, Dokl. Math., 104:3 (2021), 365–368 | DOI
[72] V. K. Romanko, Course of difference equations, Fizmatlit, Moscow, 2012 (Russian) http://www.fml.ru/book/showbook/1483