Fermions from classical probability and statistics defined by stochastic independence
Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 855-890
Voir la notice de l'article provenant de la source Math-Net.Ru
The case study of fermions and the attempt to deduce their structure from classical probability opens new ways for classical and quantum probability, in particular, for the notion of stochastic coupling which, on the basis of the example of fermions, we enlarge to the notion of algebraic coupling, and for the various notions of stochastic independence. These notions are shown to be strictly correlated with algebraic and stochastic couplings. This approach allows to expand considerably the notion of open system. The above statements will be illustrated with some examples. The last section shows how, from these new stochastic couplings, new statistics emerge alongside the known Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac statistics.
Keywords:
stochastic independences, algebraic constraints.
Mots-clés : fermions, Pauli exclusion principle
Mots-clés : fermions, Pauli exclusion principle
@article{IM2_2023_87_5_a1,
author = {L. Accardi and Yu. G. Lu},
title = {Fermions from classical probability and statistics defined by stochastic independence},
journal = {Izvestiya. Mathematics },
pages = {855--890},
publisher = {mathdoc},
volume = {87},
number = {5},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a1/}
}
TY - JOUR AU - L. Accardi AU - Yu. G. Lu TI - Fermions from classical probability and statistics defined by stochastic independence JO - Izvestiya. Mathematics PY - 2023 SP - 855 EP - 890 VL - 87 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a1/ LA - en ID - IM2_2023_87_5_a1 ER -
L. Accardi; Yu. G. Lu. Fermions from classical probability and statistics defined by stochastic independence. Izvestiya. Mathematics , Tome 87 (2023) no. 5, pp. 855-890. http://geodesic.mathdoc.fr/item/IM2_2023_87_5_a1/