Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 835-851

Voir la notice de l'article provenant de la source Math-Net.Ru

The Michael selection theorem is extended to the case of set-valued mappings with not necessarily convex values. Classical approximation problems on cone-spaces with symmetric and asymmetric seminorms are considered. In particular, conditions for existence of continuous selections for convex subsets of asymmetric spaces are studied. The problem of existence of a Chebyshev centre for a bounded set is solved in a semilinear space consisting of bounded convex sets with Hausdorff semimetric.
Keywords: selection of a set-valued mapping, Michael's selection theorem, fixed point, asymmetric space, Chebyshev centre, convex set, $\varepsilon$-selection.
@article{IM2_2023_87_4_a6,
     author = {I. G. Tsar'kov},
     title = {Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces},
     journal = {Izvestiya. Mathematics },
     pages = {835--851},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 835
EP  - 851
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/
LA  - en
ID  - IM2_2023_87_4_a6
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces
%J Izvestiya. Mathematics 
%D 2023
%P 835-851
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/
%G en
%F IM2_2023_87_4_a6
I. G. Tsar'kov. Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 835-851. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/