Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_4_a6, author = {I. G. Tsar'kov}, title = {Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces}, journal = {Izvestiya. Mathematics }, pages = {835--851}, publisher = {mathdoc}, volume = {87}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/} }
TY - JOUR AU - I. G. Tsar'kov TI - Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces JO - Izvestiya. Mathematics PY - 2023 SP - 835 EP - 851 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/ LA - en ID - IM2_2023_87_4_a6 ER -
I. G. Tsar'kov. Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 835-851. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/
[1] V. Donjuán and N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR | Zbl
[2] S. Cobzaş, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | DOI | MR | Zbl
[3] Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013 | DOI | MR | Zbl
[4] A. R. Alimov, “The Banach–Mazur theorem for spaces with an asymmetric distance”, Uspekhi Mat. Nauk, 58:2(350) (2003), 159–160 ; English transl. 58:2 (2003), 367–369 | DOI | MR | Zbl | DOI
[5] A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 19–27 ; English transl. Funct. Anal. Appl., 35:3 (2001), 176–182 | DOI | MR | Zbl | DOI
[6] A. R. Alimov, “Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces”, Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014), 489–497 (in Russian) | DOI | Zbl
[7] A. R. Alimov and I. G. Tsar'kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math., 77:2 (2022), 86 | DOI | MR | Zbl
[8] I. G. Tsarkov, “Uniformly and locally convex asymmetric spaces”, Russ. J. Math. Phys., 29:1 (2022), 141–148 | DOI | MR | Zbl
[9] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Mat. Sb., 211:8 (2020), 132–157 ; English transl. Sb. Math., 211:8 (2020), 1190–1211 | DOI | MR | Zbl | DOI
[10] I. G. Tsar'kov, “Weakly monotone sets and continuous selection in asymmetric spaces”, Mat. Sb., 210:9 (2019), 129–152 ; English transl. Sb. Math., 210:9 (2019), 1326–1347 | DOI | MR | Zbl | DOI
[11] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. RAN. Ser. Mat., 82:4 (2018), 199–224 ; English transl. Izv. Math., 82:4 (2018), 837–859 | DOI | MR | Zbl | DOI
[12] I. G. Tsar'kov, “Continuous selections in asymmetric spaces”, Mat. Sb., 209:4 (2018), 95–116 ; English transl. Sb. Math., 209:4 (2018), 560–579 | DOI | MR | Zbl | DOI
[13] I. G. Tsar'kov, “Properties of monotone path-connected sets”, Izv. RAN. Ser. Mat., 85:2 (2021), 142–171 ; English transl. Izv. Math., 85:2 (2021), 306–331 | DOI | MR | Zbl | DOI
[14] I. G. Tsar'kov, “Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces”, Mat. Sb., 213:2 (2022), 149–166 ; English transl. Sb. Math., 213:2 (2022), 268–282 | DOI | MR | Zbl | DOI
[15] I. G. Tsar'kov, “Uniform convexity in nonsymmetric spaces”, Mat. Zametki, 110:5 (2021), 773–785 ; English transl. Math. Notes, 110:5 (2021), 773–783 | DOI | MR | Zbl | DOI
[16] I. G. Tsar'kov, “Continuous $\varepsilon$-selection”, Mat. Sb., 207:2 (2016), 123–142 ; English transl. Sb. Math., 207:2 (2016), 267–285 | DOI | MR | Zbl | DOI
[17] D. Repovš and P. V. Semenov, “Michael's theory of continuous selections. Development and applications”, Uspekhi Mat. Nauk, 49:6(300) (1994), 151–190 ; English transl. Russian Math. Surveys, 49:6 (1994), 157–196 | MR | Zbl | DOI
[18] R. A. Khachatryan, “On continuous selections of set-valued mappings with almost convex values”, Izv. RAN RA. Matem., 54:1 (2019), 60–75; English transl. J. Contemp. Math. Anal., 54:1 (2019), 28–37 | DOI | MR | Zbl
[19] E. Michael, “A selection theorem”, Proc. Amer. Math. Soc., 17 (1966), 1404–1406 | DOI | MR | Zbl
[20] G. Beer, Topologies on closed and closed convex sets, Math. Appl., 268, Kluwer Acad. Publ., Dordrecht, 1993 | DOI | MR | Zbl
[21] L. M. García-Raffi, S. Romaguera, and E. A. Sánchez Pérez, “On Hausdorff asymmetric normed linear spaces”, Houston J. Math., 29:3 (2003), 717–728 | MR | Zbl
[22] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. RAN. Ser. Mat., 78:4 (2014), 3–18 ; English transl. Izv. Math., 78:4 (2014), 641–655 | DOI | MR | Zbl | DOI
[23] I. G. Tsar'kov, “Properties of suns in the spaces $L^1$ and $C(Q)$”, Russ. J. Math. Phys., 28:3 (2021), 398–405 | DOI | MR | Zbl
[24] I. G. Tsar'kov, “Continuity of a metric function and projection in asymmetric spaces”, Mat. Zametki, 111:4 (2022), 606–615 ; English transl. Math. Notes, 111:4 (2022), 616–623 | DOI | MR | Zbl | DOI