Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 835-851.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Michael selection theorem is extended to the case of set-valued mappings with not necessarily convex values. Classical approximation problems on cone-spaces with symmetric and asymmetric seminorms are considered. In particular, conditions for existence of continuous selections for convex subsets of asymmetric spaces are studied. The problem of existence of a Chebyshev centre for a bounded set is solved in a semilinear space consisting of bounded convex sets with Hausdorff semimetric.
Keywords: selection of a set-valued mapping, Michael's selection theorem, fixed point, asymmetric space, Chebyshev centre, convex set, $\varepsilon$-selection.
@article{IM2_2023_87_4_a6,
     author = {I. G. Tsar'kov},
     title = {Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces},
     journal = {Izvestiya. Mathematics },
     pages = {835--851},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 835
EP  - 851
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/
LA  - en
ID  - IM2_2023_87_4_a6
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces
%J Izvestiya. Mathematics 
%D 2023
%P 835-851
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/
%G en
%F IM2_2023_87_4_a6
I. G. Tsar'kov. Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 835-851. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/

[1] V. Donjuán and N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR | Zbl

[2] S. Cobzaş, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | DOI | MR | Zbl

[3] Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013 | DOI | MR | Zbl

[4] A. R. Alimov, “The Banach–Mazur theorem for spaces with an asymmetric distance”, Uspekhi Mat. Nauk, 58:2(350) (2003), 159–160 ; English transl. 58:2 (2003), 367–369 | DOI | MR | Zbl | DOI

[5] A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 19–27 ; English transl. Funct. Anal. Appl., 35:3 (2001), 176–182 | DOI | MR | Zbl | DOI

[6] A. R. Alimov, “Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces”, Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014), 489–497 (in Russian) | DOI | Zbl

[7] A. R. Alimov and I. G. Tsar'kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math., 77:2 (2022), 86 | DOI | MR | Zbl

[8] I. G. Tsarkov, “Uniformly and locally convex asymmetric spaces”, Russ. J. Math. Phys., 29:1 (2022), 141–148 | DOI | MR | Zbl

[9] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Mat. Sb., 211:8 (2020), 132–157 ; English transl. Sb. Math., 211:8 (2020), 1190–1211 | DOI | MR | Zbl | DOI

[10] I. G. Tsar'kov, “Weakly monotone sets and continuous selection in asymmetric spaces”, Mat. Sb., 210:9 (2019), 129–152 ; English transl. Sb. Math., 210:9 (2019), 1326–1347 | DOI | MR | Zbl | DOI

[11] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. RAN. Ser. Mat., 82:4 (2018), 199–224 ; English transl. Izv. Math., 82:4 (2018), 837–859 | DOI | MR | Zbl | DOI

[12] I. G. Tsar'kov, “Continuous selections in asymmetric spaces”, Mat. Sb., 209:4 (2018), 95–116 ; English transl. Sb. Math., 209:4 (2018), 560–579 | DOI | MR | Zbl | DOI

[13] I. G. Tsar'kov, “Properties of monotone path-connected sets”, Izv. RAN. Ser. Mat., 85:2 (2021), 142–171 ; English transl. Izv. Math., 85:2 (2021), 306–331 | DOI | MR | Zbl | DOI

[14] I. G. Tsar'kov, “Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces”, Mat. Sb., 213:2 (2022), 149–166 ; English transl. Sb. Math., 213:2 (2022), 268–282 | DOI | MR | Zbl | DOI

[15] I. G. Tsar'kov, “Uniform convexity in nonsymmetric spaces”, Mat. Zametki, 110:5 (2021), 773–785 ; English transl. Math. Notes, 110:5 (2021), 773–783 | DOI | MR | Zbl | DOI

[16] I. G. Tsar'kov, “Continuous $\varepsilon$-selection”, Mat. Sb., 207:2 (2016), 123–142 ; English transl. Sb. Math., 207:2 (2016), 267–285 | DOI | MR | Zbl | DOI

[17] D. Repovš and P. V. Semenov, “Michael's theory of continuous selections. Development and applications”, Uspekhi Mat. Nauk, 49:6(300) (1994), 151–190 ; English transl. Russian Math. Surveys, 49:6 (1994), 157–196 | MR | Zbl | DOI

[18] R. A. Khachatryan, “On continuous selections of set-valued mappings with almost convex values”, Izv. RAN RA. Matem., 54:1 (2019), 60–75; English transl. J. Contemp. Math. Anal., 54:1 (2019), 28–37 | DOI | MR | Zbl

[19] E. Michael, “A selection theorem”, Proc. Amer. Math. Soc., 17 (1966), 1404–1406 | DOI | MR | Zbl

[20] G. Beer, Topologies on closed and closed convex sets, Math. Appl., 268, Kluwer Acad. Publ., Dordrecht, 1993 | DOI | MR | Zbl

[21] L. M. García-Raffi, S. Romaguera, and E. A. Sánchez Pérez, “On Hausdorff asymmetric normed linear spaces”, Houston J. Math., 29:3 (2003), 717–728 | MR | Zbl

[22] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. RAN. Ser. Mat., 78:4 (2014), 3–18 ; English transl. Izv. Math., 78:4 (2014), 641–655 | DOI | MR | Zbl | DOI

[23] I. G. Tsar'kov, “Properties of suns in the spaces $L^1$ and $C(Q)$”, Russ. J. Math. Phys., 28:3 (2021), 398–405 | DOI | MR | Zbl

[24] I. G. Tsar'kov, “Continuity of a metric function and projection in asymmetric spaces”, Mat. Zametki, 111:4 (2022), 606–615 ; English transl. Math. Notes, 111:4 (2022), 616–623 | DOI | MR | Zbl | DOI