Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 835-851
Voir la notice de l'article provenant de la source Math-Net.Ru
The Michael selection theorem is extended to the case of set-valued mappings with not necessarily convex values.
Classical approximation problems on cone-spaces with symmetric and asymmetric seminorms are considered.
In particular, conditions for existence of continuous selections
for convex subsets of asymmetric spaces are studied.
The problem of existence of a Chebyshev centre for a bounded set
is solved in a semilinear space consisting of bounded convex sets with Hausdorff semimetric.
Keywords:
selection of a set-valued mapping, Michael's selection theorem, fixed point, asymmetric space, Chebyshev centre, convex set, $\varepsilon$-selection.
@article{IM2_2023_87_4_a6,
author = {I. G. Tsar'kov},
title = {Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces},
journal = {Izvestiya. Mathematics },
pages = {835--851},
publisher = {mathdoc},
volume = {87},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/}
}
TY - JOUR AU - I. G. Tsar'kov TI - Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces JO - Izvestiya. Mathematics PY - 2023 SP - 835 EP - 851 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/ LA - en ID - IM2_2023_87_4_a6 ER -
I. G. Tsar'kov. Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 835-851. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a6/