Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 798-816
Voir la notice de l'article provenant de la source Math-Net.Ru
An answer is given to the question of M. Lohrey and B. Steinberg on
decidability of the submonoid membership problem for a finitely generated nilpotent group. Namely, a finitely generated submonoid of a free nilpotent group of class $2$ of sufficiently large rank $r$ is constructed,
for which the membership problem is algorithmically undecidable. This implies the existence of a submonoid with
similar property in any free nilpotent group of class $l \geqslant 2$ of rank $r$. The proof is based on the undecidability of Hilbert's tenth problem.
Keywords:
submonoid membership problem, nilpotent group, Hilbert's tenth problem, interpretability of equations in groups.
@article{IM2_2023_87_4_a4,
author = {V. A. Roman'kov},
title = {Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank},
journal = {Izvestiya. Mathematics },
pages = {798--816},
publisher = {mathdoc},
volume = {87},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a4/}
}
TY - JOUR AU - V. A. Roman'kov TI - Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank JO - Izvestiya. Mathematics PY - 2023 SP - 798 EP - 816 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a4/ LA - en ID - IM2_2023_87_4_a4 ER -
%0 Journal Article %A V. A. Roman'kov %T Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank %J Izvestiya. Mathematics %D 2023 %P 798-816 %V 87 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a4/ %G en %F IM2_2023_87_4_a4
V. A. Roman'kov. Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 798-816. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a4/