Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_4_a4, author = {V. A. Roman'kov}, title = {Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank}, journal = {Izvestiya. Mathematics }, pages = {798--816}, publisher = {mathdoc}, volume = {87}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a4/} }
TY - JOUR AU - V. A. Roman'kov TI - Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank JO - Izvestiya. Mathematics PY - 2023 SP - 798 EP - 816 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a4/ LA - en ID - IM2_2023_87_4_a4 ER -
%0 Journal Article %A V. A. Roman'kov %T Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank %J Izvestiya. Mathematics %D 2023 %P 798-816 %V 87 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a4/ %G en %F IM2_2023_87_4_a4
V. A. Roman'kov. Undecidability of the submonoid membership problem for free nilpotent group of class $l\geqslant 2$ of sufficiently large rank. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 798-816. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a4/
[1] A. Myasnikov, V. Shpilrain, and A. Ushakov, Group-based cryptography, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2008 | DOI | MR | Zbl
[2] A. Myasnikov, V. Shpilrain, and A. Ushakov, Non-commutative cryptography and complexity of group-theoretic problems, Math. Surveys Monogr., 177, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[3] V. A. Roman'kov, Algebraic cryptography, Izd-vo Omsk. Univ., Omsk, 2020 (Russian)
[4] S. I. Adian and V. G. Durnev, “Decision problems for groups and semigroups”, Uspekhi Mat. Nauk, 55:2(332) (2000), 3–94 ; English transl. Russian Math. Surveys, 55:2 (2000), 207–296 | DOI | MR | Zbl | DOI
[5] G. A. Noskov, V. N. Remeslennikov, and V. A. Roman'kov, “Infinite groups”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 17, VINITI, Moscow, 1979, 65–157 ; English transl. J. Soviet Math., 18:5 (1982), 669–735 | MR | Zbl | DOI
[6] V. N. Remeslennikov and V. A. Roman'kov, “Model-theoretic and algorithmic questions in group theory”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 21, VINITI, Moscow, 1983, 3–79 ; English transl. J. Soviet Math., 31:3 (1985), 2887–2939 | MR | Zbl | DOI
[7] V. A. Roman'kov, “On algorithmic problems of group theory”, Vestn. Omsk. Univ., 2017, no. 2, 18–27
[8] Ch. F. Miller, III, “Decision problems in algebraic classes of groups (a survey)”, Word problems: decision problems and the Burnside problem in group theory, Dedicated to H. Neumann (Univ. California, Irvine, CA 1969), Stud. Logic Found. Math., 71, North-Holland, Amsterdam, 1973, 507–523 | DOI | MR | Zbl
[9] A. I. Mal'cev, “On homomorphisms onto finite groups”, Uch. zap. Ivan. Ped. Univ., 18:5 (1958), 49–60 ; English transl. Amer. Math. Soc. Transl. Ser. 2, 119, Amer. Math. Soc., Providence, RI, 1983, 67–79 | Zbl | DOI
[10] F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev, I. Rivin, V. Shpilrain, A. Ushakov, and P. Weil, Complexity and randomness in group theory. GAGTA book 1, De Gruyter, Berlin, 2020 | DOI | MR | Zbl
[11] M. Lohrey, “The rational subset membership problem for groups: a survey”, Groups St. Andrews 2013, London Math. Soc. Lecture Note Ser., 422, Cambridge Univ. Press, Cambridge, 2015, 368–389 | DOI | MR | Zbl
[12] V. A. Roman'kov, “On the occurence problem for rational subsets of a group”, Combinartorial and coputational methods in mechanics, Sb. Nauchn. Tr., OmskGU, Omsk, 1999, 235–242 (in Russian)
[13] V. A. Roman'kov, Rational subsets in groups, Izd-vo Omsk gos. univ., Omsk, 2014
[14] R. H. Gilman, “Formal languages and infinite groups”, Geometric and computational perspectives on infinite groups (Minneapolis, MN, New Brunswick, NJ 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25, Amer. Math. Soc., Providence, RI, 1996, 27–51 | DOI | MR | Zbl
[15] V. A. Roman'kov, “Polycyclic, metabelian or soluble of type $(\mathrm{FP})_{\infty}$ groups with Boolean algebra of rational sets and biautomatic soluble groups are virtually abelian”, Glasg. Math. J., 60:1 (2018), 209–218 | DOI | MR | Zbl
[16] M. Benois, “Parties rationnelles du groupe libre”, C. R. Acad. Sci. Paris Sér. A, 269 (1969), 1188–1190 | MR | Zbl
[17] S. Eilenberg and M. P. Schützenberger, “Rational sets in commutative monoids”, J. Algebra, 13:2 (1969), 173–191 | DOI | MR | Zbl
[18] M. Yu. Nedbaj, “On the occurrence problem in rational subsets of finitely generated Abelian groups”, Vestn. Omsk. Univ., 1999, no. 3, 37–41 | Zbl
[19] Z. Grunschlag, Algorithms in geometric group theory, PhD thesis, Univ. of California, Berkeley, 1999 | MR
[20] M. Yu. Nedbaj, “The occurrence problem in a rational subset of the free product of groups”, Vestn. Omsk. Univ., 2000, no. 2, 17–18 | Zbl
[21] M. Lohrey and B. Steinberg, “Tilings and submonoids of metabelian groups”, Theory Comput. Syst., 48:2 (2011), 411–427 | DOI | MR | Zbl
[22] Yu. V. Matiyasevich, “Diophantine representation of enumerable predicates”, Izv. Akad. Nauk SSSR Ser. Mat., 35:1 (1971), 3–30 ; English transl. Math. USSR-Izv., 5:1 (1971), 1–28 | MR | Zbl | DOI
[23] Yu. V. Matijasevič, “Some purely mathematical results inspired by mathematical logic”, Logic, foundations of mathematics and computability theory, Proc. 5th internat. congr. logic, methodology and philos. of sci., Part I (Univ. Western Ontario, London, ON 1975), Univ. Western Ontario Ser. Philos. Sci., 9, Reidel, Dordrecht, 1977, 121–127 | DOI | MR | Zbl
[24] Y. Matijasevič and J. Robinson, “Reduction of an arbitrary Diophantine equation to one in 13 unknowns”, Acta Arith., 27 (1975), 521–553 | DOI | MR | Zbl
[25] J. P. Jones, “Undecidable Diophantine equations”, Bull. Amer. Math. Soc. (N.S.), 3:2 (1980), 859–862 | DOI | MR | Zbl
[26] T. Skolem, Diophantische Gleichungen, Ergeb. Math. Grenzgeb., 5, Springer, Berlin, 1938 | Zbl
[27] V. A. Roman'kov, “Two problems for solvable and nilpotent groups”, Algebra i Logika, 59:6 (2020), 719–733 ; English transl. Algebra and Logic, 59:6 (2021), 483–492 | DOI | MR | Zbl | DOI
[28] V. A. Roman'kov, “Positive elements and sufficient conditions for solvability of the submonoid membership problem for nilpotent groups of class two”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 387–403 | DOI | MR | Zbl