$SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 768-797.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the $SU$-linear operations in complex cobordism and prove that they are generated by the well-known geometric operations $\partial_i$. For the theory $W$ of $c_1$-spherical bordism, we describe all $SU$-linear multiplications on $W$ and projections $MU \to W$. We also analyse complex orientations on $W$ and the corresponding formal group laws $F_W$. The relationship between the formal group laws $F_W$ and the coefficient ring $W_*$ of the $W$-theory was studied by Buchstaber in 1972. We extend his results by showing that for any $SU$-linear multiplication and orientation on $W$, the coefficients of the corresponding formal group law $F_W$ do not generate the ring $W_*$, unlike the situation with complex bordism.
Keywords: complex bordism, cohomological operations, formal group laws.
Mots-clés : $SU$-bordism
@article{IM2_2023_87_4_a3,
     author = {T. E. Panov and G. S. Chernykh},
     title = {$SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory},
     journal = {Izvestiya. Mathematics },
     pages = {768--797},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a3/}
}
TY  - JOUR
AU  - T. E. Panov
AU  - G. S. Chernykh
TI  - $SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 768
EP  - 797
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a3/
LA  - en
ID  - IM2_2023_87_4_a3
ER  - 
%0 Journal Article
%A T. E. Panov
%A G. S. Chernykh
%T $SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory
%J Izvestiya. Mathematics 
%D 2023
%P 768-797
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a3/
%G en
%F IM2_2023_87_4_a3
T. E. Panov; G. S. Chernykh. $SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 768-797. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a3/

[1] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism”, Izv. Akad. Nauk SSSR Ser. Mat., 31:4 (1967), 855–951 ; Math. USSR-Izv., 1:4 (1967), 827–913 | MR | Zbl | DOI

[2] R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1968 ; Russian transl. Mir, Moscow, 1973 | MR | Zbl | MR | Zbl

[3] I. Yu. Limonchenko, T. E. Panov, and G. S. Chernykh, “$SU$-bordism: structure results and geometric representatives”, Uspekhi Mat. Nauk, 74:3(447) (2019), 95–166 ; English transl. Russian Math. Surveys, 74:3 (2019), 461–524 | DOI | MR | Zbl | DOI

[4] P. S. Landweber, “Cobordism operations and Hopf algebras”, Trans. Amer. Math. Soc., 129 (1967), 94–110 | DOI | MR | Zbl

[5] P. E. Conner and E. E. Floyd, Torsion in $\mathrm{SU}$-bordism, Mem. Amer. Math. Soc., 60, Amer. Math. Soc., Providence, RI, 1966 | DOI | MR | Zbl

[6] V. M. Buchstaber, “Projectors in unitary cobordisms that are related to $SU$-theory”, Uspekhi Mat. Nauk, 27:6(168) (1972), 231–232 | MR | Zbl

[7] M. Bakuradze, Polynomial generators of $MSU^*[1/2]$ related to classifying maps of certain formal group laws, 2021, arXiv: 2107.01395

[8] J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL–London, 1974 ; Russian transl. MCNMO, Moscow, 2014 | MR | Zbl

[9] R. M. Switzer, Algebraic topology – homotopy and homology, Grundlehren Math. Wiss., 212, Springer-Verlag, New York–Heidelberg, 1975 ; Russian transl. Nauka, Moscow, 1985 | MR | Zbl | MR | Zbl

[10] H. R. Margolis, Spectra and the Steenrod algebra. Modules over the Steenrod algebra and the stable homotopy category, North-Holland Math. Library, 29, North-Holland Publishing Co., Amsterdam, 1983 | MR | Zbl

[11] Yu. B. Rudyak, On Thom spectra, orientability, and cobordism, Springer Monogr. Math., Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[12] D. Barnes and C. Roitzheim, Foundations of stable homotopy theory, Cambridge Stud. Adv. Math., 185, Cambridge Univ. Press, Cambridge, 2020 | DOI | MR | Zbl

[13] M. F. Atiyah, “Bordism and cobordism”, Proc. Cambridge Philos. Soc., 57:2 (1961), 200–208 | DOI | MR | Zbl

[14] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, With an appendix by M. Cole, Math. Surveys Monogr., 47, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[15] V. M. Buchstaber, “Complex cobordism and formal groups”, Uspekhi Mat. Nauk, 67:5(407) (2012), 111–174 ; English transl. Russian Math. Surveys, 67:5 (2012), 891–950 | DOI | MR | Zbl | DOI

[16] D. C. Ravenel, “Localization with respect to certain periodic homology theories”, Amer. J. Math., 106:2 (1984), 351–414 | DOI | MR | Zbl

[17] B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, and S. A. Yuzvinskii, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Uspekhi Mat. Nauk, 55:4(334) (2000), 5–24 ; English transl. Russian Math. Surveys, 55:4 (2000), 613–633 | DOI | MR | Zbl | DOI

[18] S. P. Novikov, “Homotopy properties of Thom complexes”, Mat. Sb. (N.S.), 57(99):4 (1962), 407–442 ; English transl. Topological library, Part 1: cobordisms and their applications, Ser. Knots Everything, 39, World Sci. Publ., Hackensack, NJ, 2007, 211–250 | MR | Zbl | DOI | MR | Zbl