$SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 768-797
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the $SU$-linear operations in complex cobordism and prove that
they are generated by the well-known geometric operations $\partial_i$.
For the theory $W$ of $c_1$-spherical bordism, we describe all
$SU$-linear multiplications on $W$ and projections $MU \to W$. We also
analyse complex orientations on $W$ and the corresponding formal group
laws $F_W$. The relationship between the formal group laws $F_W$
and the coefficient ring $W_*$ of the $W$-theory was studied
by Buchstaber in 1972. We extend his results by showing that for any
$SU$-linear multiplication and orientation on $W$, the coefficients
of the corresponding formal group law $F_W$ do not generate the ring $W_*$,
unlike the situation with complex bordism.
Keywords:
complex bordism, cohomological operations, formal group laws.
Mots-clés : $SU$-bordism
Mots-clés : $SU$-bordism
@article{IM2_2023_87_4_a3,
author = {T. E. Panov and G. S. Chernykh},
title = {$SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory},
journal = {Izvestiya. Mathematics },
pages = {768--797},
publisher = {mathdoc},
volume = {87},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a3/}
}
TY - JOUR AU - T. E. Panov AU - G. S. Chernykh TI - $SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory JO - Izvestiya. Mathematics PY - 2023 SP - 768 EP - 797 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a3/ LA - en ID - IM2_2023_87_4_a3 ER -
T. E. Panov; G. S. Chernykh. $SU$-linear operations in complex cobordism and the $c_1$-spherical bordism theory. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 768-797. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a3/