Variations of $v$-change of time in an~optimal control problem with state and mixed constraints
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 726-767

Voir la notice de l'article provenant de la source Math-Net.Ru

For a general optimal control problem with state and regular mixed constraints we propose a proof of the maximum principle based on the so-called $v$-change of time variable $t \mapsto \tau$, under which the original time becomes an additional state variable subject to the equation $dt/d\tau = v(\tau)$, while the additional control variable $v(\tau)\geqslant 0$ is piecewise constant, and its values become arguments of the new problem.
Keywords: state and mixed constraints, positively linearly independent vectors, $v$-change of time, stationarity conditions, Lagrange multipliers, functional on $L_\infty$, weak* compactness, maximum principle.
Mots-clés : Lebesgue–Stieltjes measure
@article{IM2_2023_87_4_a2,
     author = {A. V. Dmitruk},
     title = {Variations of $v$-change of time in an~optimal control problem with state and mixed constraints},
     journal = {Izvestiya. Mathematics },
     pages = {726--767},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a2/}
}
TY  - JOUR
AU  - A. V. Dmitruk
TI  - Variations of $v$-change of time in an~optimal control problem with state and mixed constraints
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 726
EP  - 767
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a2/
LA  - en
ID  - IM2_2023_87_4_a2
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%T Variations of $v$-change of time in an~optimal control problem with state and mixed constraints
%J Izvestiya. Mathematics 
%D 2023
%P 726-767
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a2/
%G en
%F IM2_2023_87_4_a2
A. V. Dmitruk. Variations of $v$-change of time in an~optimal control problem with state and mixed constraints. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 726-767. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a2/