Variations of $v$-change of time in an~optimal control problem with state and mixed constraints
Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 726-767
Voir la notice de l'article provenant de la source Math-Net.Ru
For a general optimal control problem with state and regular mixed constraints we propose a proof of the maximum principle based on the so-called $v$-change of time variable $t \mapsto \tau$, under which the original time becomes an additional state variable subject to the equation $dt/d\tau = v(\tau)$, while the additional control variable $v(\tau)\geqslant 0$ is piecewise constant, and its values become arguments of the new problem.
Keywords:
state and mixed constraints, positively linearly independent vectors,
$v$-change of time, stationarity conditions, Lagrange multipliers,
functional on $L_\infty$, weak* compactness, maximum principle.
Mots-clés : Lebesgue–Stieltjes measure
Mots-clés : Lebesgue–Stieltjes measure
@article{IM2_2023_87_4_a2,
author = {A. V. Dmitruk},
title = {Variations of $v$-change of time in an~optimal control problem with state and mixed constraints},
journal = {Izvestiya. Mathematics },
pages = {726--767},
publisher = {mathdoc},
volume = {87},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a2/}
}
TY - JOUR AU - A. V. Dmitruk TI - Variations of $v$-change of time in an~optimal control problem with state and mixed constraints JO - Izvestiya. Mathematics PY - 2023 SP - 726 EP - 767 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a2/ LA - en ID - IM2_2023_87_4_a2 ER -
A. V. Dmitruk. Variations of $v$-change of time in an~optimal control problem with state and mixed constraints. Izvestiya. Mathematics , Tome 87 (2023) no. 4, pp. 726-767. http://geodesic.mathdoc.fr/item/IM2_2023_87_4_a2/