Log adjunction: moduli part
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 616-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper moduli part of adjunction is introduced and its basic property are discussed. The moduli part is b-Cartier in the case of rational multiplicities and is b-nef in the maximal case.
Keywords: log adjunction, divisorial part, lc threshold.
Mots-clés : moduli part
@article{IM2_2023_87_3_a8,
     author = {V. V. Shokurov},
     title = {Log adjunction: moduli part},
     journal = {Izvestiya. Mathematics },
     pages = {616--640},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a8/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Log adjunction: moduli part
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 616
EP  - 640
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a8/
LA  - en
ID  - IM2_2023_87_3_a8
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Log adjunction: moduli part
%J Izvestiya. Mathematics 
%D 2023
%P 616-640
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a8/
%G en
%F IM2_2023_87_3_a8
V. V. Shokurov. Log adjunction: moduli part. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 616-640. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a8/

[1] F. Ambro, P. Cascini, V. Shokurov, and C. Spicer, Positivity of the moduli part, arXiv: 2111.00423

[2] F. Ambro, “Shokurov's boundary property”, J. Differential Geom., 67:2 (2004), 229–255 | DOI | MR | Zbl

[3] V. V. Shokurov, Log adjunction: effectiveness and positivity, arXiv: 1308.5160

[4] V. A. Iskovskikh, “b-divisors and functional algebras according to Shokurov”, Birational geometry: Linear systems and finitely generated algebras, Collected papers, Trudy Mat. Inst. Steklova, 240, MAIK “Nauka/Interperiodika”, Moscow, 2003, 8–20 ; English transl. Proc. Steklov Inst. Math., 240 (2003), 4–15 | MR | Zbl

[5] V. V. Shokurov, “Prelimiting flips”, Birational geometry: Linear systems and finitely generated algebras, Collected papers, Trudy Mat. Inst. Steklova, 240, MAIK “Nauka/Interperiodika”, Moscow, 2003, 82–219 ; Proc. Steklov Inst. Math., 240 (2003), 75–213 | MR | Zbl

[6] V. V. Shokurov, Existence and boundedness of $n$-complements, arXiv: 2012.06495

[7] Yu. G. Prokhorov and V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom., 18:1 (2009), 151–199 | DOI | MR | Zbl

[8] Y. Kawamata, “Subadjunction of log canonical divisors for a subvariety of codimension 2”, Birational algebraic geometry (Baltimore, MD 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88 | DOI | MR | Zbl

[9] F. Ambro, The adjunction conjecture and its applications, PhD thesis, The Johns Hopkins Univ., Ann Arbor, MI, 1999; arXiv: math/9903060

[10] M. Raynaud and L. Gruson, “Critères de platitude et de projectivité. Techniques de “platification” d'un module”, Première partie: Platitude en géométrie algébrique, Invent. Math., 13 (1971), 1–52 | DOI | MR | Zbl

[11] A. J. de Jong, “Family of curves and alterations”, Ann. Inst. Fourier (Grenoble), 47:2 (1997), 599–621 | DOI | MR | Zbl

[12] D. Abramovich and K. Karu, “Weak semistable reduction in characteristic $0$”, Invent. Math., 139:2 (2000), 241–273 | DOI | MR | Zbl

[13] C. Birkar and De-Qi Zhang, “Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs”, Publ. Math. Inst. Hautes Études Sci., 123 (2016), 283–331 | DOI | MR | Zbl

[14] C. D. Hacon, J. McKernan, and Chenyang Xu, “ACC for log canonical thresholds”, Ann. of Math. (2), 180:2 (2014), 523–571 | DOI | MR | Zbl

[15] S. Keel, “Basepoint freeness for nef and big line bundles in positive characteristic”, Ann. of Math. (2), 149:1 (1999), 253–286 | DOI | MR | Zbl

[16] F. Ambro, Fibered log varieties, July 27 2003

[17] V. V. Shokurov and Sung Rak Choi, “Geography of log models: theory and applications”, Cent. Eur. J. Math., 9:3 (2011), 489–534 | DOI | MR | Zbl