Log adjunction: moduli part
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 616-640

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper moduli part of adjunction is introduced and its basic property are discussed. The moduli part is b-Cartier in the case of rational multiplicities and is b-nef in the maximal case.
Keywords: log adjunction, divisorial part, lc threshold.
Mots-clés : moduli part
@article{IM2_2023_87_3_a8,
     author = {V. V. Shokurov},
     title = {Log adjunction: moduli part},
     journal = {Izvestiya. Mathematics },
     pages = {616--640},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a8/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Log adjunction: moduli part
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 616
EP  - 640
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a8/
LA  - en
ID  - IM2_2023_87_3_a8
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Log adjunction: moduli part
%J Izvestiya. Mathematics 
%D 2023
%P 616-640
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a8/
%G en
%F IM2_2023_87_3_a8
V. V. Shokurov. Log adjunction: moduli part. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 616-640. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a8/