Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_3_a6, author = {Yu. I. Manin}, title = {Rational points of algebraic varieties: a~homotopical approach}, journal = {Izvestiya. Mathematics }, pages = {586--594}, publisher = {mathdoc}, volume = {87}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a6/} }
Yu. I. Manin. Rational points of algebraic varieties: a~homotopical approach. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 586-594. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a6/
[1] V. V. Batyrev and Yu. I. Manin, “Sur le nombre des points rationnels de hauteur borné des variétés algébriques”, Math. Ann., 286:1-3 (1990), 27–43 | DOI | MR | Zbl
[2] E. Peyre, “Les points rationnels”, Gaz. Math., 159 (2019), 13–22 | MR | Zbl
[3] Yu. I. Manin and M. N. Smirnov, “On the derived category of $\overline{M}_{0,n}$”, Izv. Ross. Akad. Nauk Ser. Mat., 77:3 (2013), 93–108 ; Izv. Math., 77:3 (2013), 525–540 ; arXiv: 1201.0265 | DOI | MR | Zbl | DOI
[4] Yu. I. Manin and M. Smirnov, “Towards motivic quantum cohomology of $\overline{M}_{0,S}$”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 201–230 ; arXiv: 1107.4915 | DOI | MR | Zbl
[5] A. Chambert-Loir, Lectures on height zeta functions: at the confluence of algebraic geometry, algebraic number theory, and analysis, arXiv: 0812.0947
[6] Yu. Manin and M. Marcolli, Homotopy spectra and Diophantine equations, to be published in a volume, ed. by C.-T. Yau, arXiv: 2101.00197
[7] M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren Math. Wiss., 332, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[8] I. Zakharevich, “The $K$-theory of assemblers”, Adv. Math., 304 (2017), 1176–1218 | DOI | MR | Zbl
[9] E. H. Spanier and J. H. C. Whitehead, “A first approximation to homotopy theory”, Proc. Nat. Acad. Sci. U.S.A., 39:7 (1953), 655–660 | DOI | MR | Zbl
[10] G. Segal, “Categories and cohomology theories”, Topology, 13:3 (1974), 293–312 | DOI | MR | Zbl
[11] M. Lydakis, “Smash products and $\Gamma$-spaces”, Math. Proc. Cambridge Philos. Soc., 126:2 (1999), 311–328 | DOI | MR | Zbl
[12] D. Corwin and T. Schlank, Brauer and étale homotopy obstructions to rational points on open covers, arXiv: 2006.11699v3
[13] E. Peyre, Beyond heights: slopes and distribution of rational points, arXiv: 1806.11437
[14] W. Sawin, Freeness alone is insufficient for Manin–Peyre, arXiv: 2001.06078
[15] V. V. Batyrev and Yu. Tschinkel, “Manin's conjecture for toric varieties”, J. Algebraic Geom., 7:1 (1998), 15–53 | MR | Zbl
[16] J. Franke, Yu. I. Manin, and Yu. Tschinkel, “Rational points of bounded height on Fano varieties”, Invent. Math., 95:2 (1989), 421–435 | DOI | MR | Zbl
[17] B. Poonen, Rational points on varieties, Grad. Stud. Math., 186, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR | Zbl
[18] Sh. Tanimoto, An introduction to Geometric Manin's conjecture, arXiv: 2110.06660