On the local fundamental group of the complement of a~curve in a~normal surface
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 562-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a presentation of the fundamental group of the complement of a curve $C$ in its “tubular” neighbourhood in a normal surface $S$. The presentation is given in terms of the double weighted dual graph of the resolution of singularities of $C$ (and $S$). This result generalizes the presentation of the fundamental group of the complement of a normal singularity in its neighbourhood given by Mumford in the case, where the dual graph of the resolution is a tree and all exceptional curves of the resolution are rational curves.
Keywords: tubular neighbourhood of complex curve, fundamental group.
@article{IM2_2023_87_3_a5,
     author = {Vik. S. Kulikov},
     title = {On the local fundamental group of the complement of a~curve in a~normal surface},
     journal = {Izvestiya. Mathematics },
     pages = {562--585},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a5/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On the local fundamental group of the complement of a~curve in a~normal surface
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 562
EP  - 585
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a5/
LA  - en
ID  - IM2_2023_87_3_a5
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On the local fundamental group of the complement of a~curve in a~normal surface
%J Izvestiya. Mathematics 
%D 2023
%P 562-585
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a5/
%G en
%F IM2_2023_87_3_a5
Vik. S. Kulikov. On the local fundamental group of the complement of a~curve in a~normal surface. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 562-585. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a5/

[1] K. Stein, “Analytische Zerlegungen komplexer Räume”, Math. Ann., 132 (1956), 63–93 | DOI | MR | Zbl

[2] D. Mumford, “The topology of normal singularities of an algebraic surface and a criterion for simplicity”, Inst. Hautes Études Sci. Publ. Math., 9 (1961), 5–22 ; Russian transl. Matematika, 10:6 (1966), 3–24 | DOI | MR | Zbl

[3] A. H. Durfee, “Neighborhoods of algebraic sets”, Trans. Amer. Math. Soc., 276:2 (1983), 517–530 | DOI | MR | Zbl

[4] P. Wagreich, “Singularities of complex surfaces with solvable local fundamental group”, Topology, 11 (1972), 51–72 | DOI | MR | Zbl

[5] F. Catanese, Surface classification and local and global fundamental groups. I, arXiv: math/0602128v2

[6] E. Artal Bartolo, J. I. Cogolludo-Augustín, and D. Matei, “Characteristic varieties of graph manifolds and quasi-projectivity of fundamental groups of algebraic links”, Eur. J. Math., 6:3 (2020), 624–645 | DOI | MR | Zbl

[7] Vik. S. Kulikov, “On rigid germs of finite morphisms of smooth surfaces”, Mat. Sb., 211:10 (2020), 3–31 ; English transl. Sb. Math., 211:10 (2020), 1354–1381 | DOI | MR | Zbl | DOI

[8] Vik. S. Kulikov, “Rigid germs of finite morphisms of smooth surfaces and rational Belyi pairs”, Mat. Sb., 212:9 (2021), 119–145 ; English transl. Sb. Math., 212:9 (2021), 1304–1328 | DOI | MR | Zbl | DOI

[9] Vik. S. Kulikov and E. I. Shustin, “On $G$-rigid surfaces”, Complex analysis and its applications, Collected papers. On the occasion of the centenary of the birth of Boris Vladimirovich Shabat, 85th anniversary of the birth of Anatoliy Georgievich Vitushkin, and 85th anniversary of the birth of Andrei Aleksandrovich Gonchar, Trudy Mat. Inst. Steklova, 298, MAIK “Nauka/Interperiodika”, Moscow, 2017, 144–164 ; English transl. Proc. Steklov Inst. Math., 298 (2017), 133–151 | DOI | MR | Zbl | DOI

[10] E. R. van Kampen, “On the connection between the fundamental groups of some related spaces”, Amer. J. Math., 55 (1933), 261–267 | Zbl

[11] H. Seifert, “Topologie dreidimensionaler gefaserter Räume”, Acta Math., 60:1 (1933), 147–238 | DOI | MR | Zbl