On the local fundamental group of the complement of a~curve in a~normal surface
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 562-585

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a presentation of the fundamental group of the complement of a curve $C$ in its “tubular” neighbourhood in a normal surface $S$. The presentation is given in terms of the double weighted dual graph of the resolution of singularities of $C$ (and $S$). This result generalizes the presentation of the fundamental group of the complement of a normal singularity in its neighbourhood given by Mumford in the case, where the dual graph of the resolution is a tree and all exceptional curves of the resolution are rational curves.
Keywords: tubular neighbourhood of complex curve, fundamental group.
@article{IM2_2023_87_3_a5,
     author = {Vik. S. Kulikov},
     title = {On the local fundamental group of the complement of a~curve in a~normal surface},
     journal = {Izvestiya. Mathematics },
     pages = {562--585},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a5/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On the local fundamental group of the complement of a~curve in a~normal surface
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 562
EP  - 585
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a5/
LA  - en
ID  - IM2_2023_87_3_a5
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On the local fundamental group of the complement of a~curve in a~normal surface
%J Izvestiya. Mathematics 
%D 2023
%P 562-585
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a5/
%G en
%F IM2_2023_87_3_a5
Vik. S. Kulikov. On the local fundamental group of the complement of a~curve in a~normal surface. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 562-585. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a5/