Isogeny classes and endomorphism algebras of abelian varieties over finite fields
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 469-487.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct nonisogenous simple ordinary abelian varieties over an algebraic closure of a finite field with isomorphic endomorphism algebras.
Keywords: abelian varieties, isogenies, finite fields.
Mots-clés : endomorphism algebras
@article{IM2_2023_87_3_a3,
     author = {Yu. G. Zarhin},
     title = {Isogeny classes and endomorphism algebras of abelian varieties over finite fields},
     journal = {Izvestiya. Mathematics },
     pages = {469--487},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a3/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Isogeny classes and endomorphism algebras of abelian varieties over finite fields
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 469
EP  - 487
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a3/
LA  - en
ID  - IM2_2023_87_3_a3
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Isogeny classes and endomorphism algebras of abelian varieties over finite fields
%J Izvestiya. Mathematics 
%D 2023
%P 469-487
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a3/
%G en
%F IM2_2023_87_3_a3
Yu. G. Zarhin. Isogeny classes and endomorphism algebras of abelian varieties over finite fields. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 469-487. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a3/

[1] Z. I. Borevich and I. R. Shafarevich, Number theory, 3rd ed., Nauka, Moscow, 1985 ; English transl. of 1st ed. Pure Appl. Math., 20, Academic Press, New York–London, 1966 | MR | Zbl | MR | Zbl

[2] F. Oort, “The isogeny class of a $\mathrm{CM}$-type abelian variety is defined over a finite extension of the prime field”, J. Pure Appl. Algebra, 3:4 (1973), 399–408 | DOI | MR | Zbl

[3] M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Hansischen Univ., 14 (1941), 197–272 | DOI | MR | Zbl

[4] W. C. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. École Norm. Sup. (4), 2:4 (1969), 521–560 | DOI | MR | Zbl

[5] M. Deuring, “Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. III”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1956 (1956), 37–76 | MR | Zbl

[6] J.-P. Serre and J. Tate, “Good reduction of abelian varieties”, Ann. of Math. (2), 88:3 (1968), 492–517 | DOI | MR | Zbl

[7] L. C. Washington, Introduction to cyclotomic fields, Grad. Texts in Math., 83, 2nd ed., Springer-Verlag, New York, 1997 | DOI | MR | Zbl

[8] L. Watson, Isomorphic endomorphism algebras implies isogenous (for abelian varieties over finite fields)? https://mathoverflow.net/questions/393506/isomorphic-endomorphism-algebras-implies-isogenous-for-abelian-varieties-over-f/

[9] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Math. Lehrbücher und Monogr., 1, Akademie-Verlag, Berlin, 1952 ; reprint Springer-Verlag, Berlin, 1985 ; English transl. H. Hasse, On the class number of Abelian number fields, Extended with tables by Ken-ichi Yoshino and Mikihito Hirabayashi. Translated from the 1985 German reprint and with a preface by Hirabayashi. With a foreword by Franz Lemmermeyer, Springer, Cham, 2019 | DOI | MR | Zbl | MR | Zbl | MR

[10] P. E. Conner and J. Hurrelbrink, Class number parity, Ser. Pure Math., 8, World Sci. Publ., Singapore, 1988 | DOI | MR | Zbl

[11] J. Tate, “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144 | DOI | MR | Zbl

[12] T. Honda, “Isogeny classes of abelian varieties over finite fields”, J. Math. Soc. Japan, 20:1-2 (1968), 83–95 | DOI | MR | Zbl

[13] J. Tate, “Classes d'isogénie des variétés abéliennes sur un corps fini”, Matematika, 14:6 (1970), 129–137 (Russian) ; Transl. from the French J. Tate, “Classes d'isogénie des variétés abéliennes sur un corps fini (d'aprés T. Honda)”, Séminaire Bourbaki, Lecture Notes in Math., 179, Springer, Berlin, 1968, Exp. No. 352, 95–110 | Zbl | DOI | MR | Zbl

[14] A. Weil, Basic number theory, Grundlehren Math. Wiss., 144, 3rd ed., Springer-Verlag, New York–Berlin, 1974 ; Russian transl. Mir, Moscow, 1972 | MR | Zbl | MR | Zbl

[15] G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Math. Ser., 46, Princeton Univ. Press, Princeton, NJ, 1998 | DOI | MR | Zbl

[16] D. Mumford, Abelian varieties, Tata Inst. Fundam. Res. Stud. Math., 5, 2nd ed., Oxford Univ. Press, London, 1974 ; Russian transl. of 1st ed. Mir, Moscow, 1971 | MR | Zbl | Zbl