Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_3_a2, author = {A. I. Bondal and A. A. Roslyi}, title = {Coherent sheaves, {Chern} classes, and superconnections}, journal = {Izvestiya. Mathematics }, pages = {439--468}, publisher = {mathdoc}, volume = {87}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a2/} }
A. I. Bondal; A. A. Roslyi. Coherent sheaves, Chern classes, and superconnections. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 439-468. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a2/
[1] M. Verbitsky, “Coherent sheaves on general $K3$ surfaces and tori”, Pure Appl. Math. Q., 4:3 (2008), 651–714 ; arXiv: math/0205210 | DOI | MR | Zbl
[2] A. Bondal and D. Orlov, “Reconstruction of a variety from the derived category and groups of autoequivalences”, Compositio Math., 125:3 (2001), 327–344 ; arXiv: alg-geom/9712029 | DOI | MR | Zbl
[3] D. O. Orlov, “Derived categories of coherent sheaves on Abelian varieties and equivalences between them”, Izv. Ross. Akad. Nauk Ser. Mat., 66:3 (2002), 131–158 ; English transl. Izv. Math., 66:3 (2002), 569–594 | DOI | MR | Zbl | DOI
[4] M. Anel and B. Toën, “Dénombrabilité des classes d'équivalences dérivées de variétés algébriques”, J. Algebraic Geom., 18:2 (2009), 257–277 ; arXiv: math/0611545 | DOI | MR | Zbl
[5] J. Lesieutre, “Derived-equivalent rational threefolds”, Int. Math. Res. Not. IMRN, 2015:15 (2015), 6011–6020 | DOI | MR | Zbl
[6] A. I. Bondal and M. M. Kapranov, “Representable functors, Serre functors, and mutations”, Izv. Akad. Nauk SSSR Ser. Mat., 53:6 (1989), 1183–1205 ; English transl. Math. USSR-Izv., 35:3 (1990), 519–541 | MR | Zbl | DOI
[7] A. I. Bondal and M. van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36 ; arXiv: math/0204218 | DOI | MR | Zbl
[8] B. Toën and M. Vaquié, “Algébrisation des variétés analytiques complexes et catégories dérivées”, Math. Ann., 342:4 (2008), 789–831 ; arXiv: math/0703555 | DOI | MR | Zbl
[9] A. I. Bondal and M. M. Kapranov, “Enhanced triangulated categories”, Mat. Sb., 181:5 (1990), 669–683 ; English transl. Math. USSR-Sb., 70:1 (1991), 93–107 | MR | Zbl | DOI
[10] J. Block, “Duality and equivalence of module categories in noncommutative geometry”, A celebration of the mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010, 311–339 | DOI | MR | Zbl
[11] C. Voisin, “A counterexample to the Hodge conjecture extended to Kähler varieties”, Int. Math. Res. Not. IMRN, 2002:20 (2002), 1057–1075 ; arXiv: math/0112247 | DOI | MR | Zbl
[12] N. Pali, “Faisceaux $\overline\partial$-cohérents sur les variétés complexes”, Math. Ann., 336:3 (2006), 571–615 | DOI | MR | Zbl
[13] N. Pali, Une caractérisation différentielle des faisceaux analytiques cohérents sur une variété complexe, arXiv: math/0301146
[14] D. Quillen, “Superconnections and the Chern character”, Topology, 24:1 (1985), 89–95 | DOI | MR | Zbl
[15] A. Bondal and A. Rosly, Derived categories for complex-analytic manifolds, IPMU11-0117, IPMU, Kashiwa, Japan, 2011 http://research.ipmu.jp/ipmu/sysimg/ipmu/672.pdf
[16] J.-M. Bismut, Shu Shen, and Zhaoting Wei, Coherent sheaves, superconnections, and RRG, arXiv: 2102.08129
[17] A. I. Bondal, M. Larsen, and V. A. Lunts, “Grothendieck ring of pretriangulated categories”, Int. Math. Res. Not. IMRN, 2004:29 (2004), 1461–1495 ; arXiv: math/0401009 | DOI | MR | Zbl
[18] M. M. Kapranov, “On DG-modules over the de Rham complex and the vanishing cycles functor”, Algebraic geometry (Chicago, IL 1989), Lecture Notes in Math., 1479, Springer, Berlin, 1991, 57–86 | DOI | MR | Zbl
[19] C. Sabbah, Introduction to the theory of $\mathscr D$-modules, Lecture notes (Nakai 2011) https://perso.pages.math.cnrs.fr/users/claude.sabbah/livres/sabbah_nankai110705.pdf
[20] L. Illusie, “Existence de résolutions globales”, Théorie des intersections et théorème de Riemann–Roch, Lecture Notes in Math., 225, Springer-Verlag, Berlin–New York, 1971, 160–221 | DOI | MR | Zbl
[21] H. W. Schuster, “Locally free resolutions of coherent sheaves on surfaces”, J. Reine Angew. Math., 1982:337 (1982), 159–165 | DOI | MR | Zbl
[22] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren Math. Wiss., 292, Springer-Verlag, Berlin, 1994 | MR | Zbl
[23] M. F. Atiyah and F. Hirzebruch, “Analytic cycles on complex manifolds”, Topology, 1:1 (1962), 25–45 | DOI | MR | Zbl
[24] H. Grauert, “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2), 68:2 (1958), 460–472 | DOI | MR | Zbl
[25] B. Malgrange, Ideals of differentiable functions, Tata Inst. Fund. Res. Stud. Math., 3, Tata Inst. Fund. Res., Bombay; Oxford Univ. Press, London, 1967 ; Russian transl. Mir, Moscow, 1968 | MR | Zbl | Zbl
[26] J. Grivaux, “Chern classes in Deligne cohomology for coherent analytic sheaves”, Math. Ann., 347:2 (2010), 249–284 | DOI | MR | Zbl
[27] D. S. Freed, Geometry of Dirac operators, unpublished notes, 1987
[28] D. Angella and A. Tomassini, “On the $\partial\overline\partial$-lemma and Bott–Chern cohomology”, Invent. Math., 192:1 (2013), 71–81 ; arXiv: 1402.1954 | DOI | MR | Zbl
[29] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, MA–London–Don Mills, ON, 1969 ; Russian transl. Mir, Moscow, 1972 | MR | Zbl | MR | Zbl
[30] M. F. Atiyah and F. Hirzebruch, “The Riemann–Roch theorem for analytic embeddings”, Topology, 1:2 (1962), 151–166 | DOI | MR | Zbl
[31] N. Burbaki, Commutative algebra, Elements of mathematics, Moscow, Mir, 1971 (Russian) ; Transl. from the French N. Bourbaki, Éléments de mathématique, Fasc. XXVII, XXVIII, XXX, XXXI. Algèbre commutative, Actualités Sci. Indust., 1290, 1293, 1308, 1314, Hermann, Paris, 1961–1965 ; English transl. N. Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, MA, 1972 | MR | Zbl | MR | MR | MR | MR | Zbl | MR | Zbl
[32] Hua Qiang, On the Bott–Chern characteristic classes for coherent sheaves, arXiv: 1611.04238