Coherent sheaves, Chern classes, and superconnections
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 439-468
Voir la notice de l'article provenant de la source Math-Net.Ru
A twist-closed enhancement of the bounded derived category
$\mathcal{D}^b_{\mathrm{coh}} (X)$
of complexes of $\mathcal{O}_X$-modules
with coherent cohomology is constructed by means of the DG-category of
$\overline\partial$-superconnections. The machinery of
$\overline\partial$-superconnections is applied to define Chern classes and
Bott–Chern classes of objects in the category, in particular,
of coherent sheaves.
Keywords:
coherent sheaves, derived category, DG-category, Dolbeault operator, superconnection.
@article{IM2_2023_87_3_a2,
author = {A. I. Bondal and A. A. Roslyi},
title = {Coherent sheaves, {Chern} classes, and superconnections},
journal = {Izvestiya. Mathematics },
pages = {439--468},
publisher = {mathdoc},
volume = {87},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a2/}
}
A. I. Bondal; A. A. Roslyi. Coherent sheaves, Chern classes, and superconnections. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 439-468. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a2/