Ramification filtration and differential forms
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 421-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a complete discrete valuation field of prime characteristic $p$ with finite residue field. Denote by $\Gamma_{L}^{(v)}$ the ramification subgroups of $\Gamma_{L}=\operatorname{Gal}(L^{\mathrm{sep}}/L)$. We consider the category $\operatorname{M\Gamma}_{L}^{\mathrm{Lie}}$ of finite $\mathbb{Z}_p[\Gamma_{L}]$-modules $H$, satisfying some additional (Lie)-condition on the image of $\Gamma_L$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$. In the paper it is proved that all information about the images of the groups $\Gamma_L^{(v)}$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$ can be explicitly extracted from some differential forms $\widetilde{\Omega} [N]$ on the Fontaine etale $\phi $-module $M(H)$ associated with $H$. The forms $\widetilde{\Omega}[N]$ are completely determined by a canonical connection $\nabla $ on $M(H)$. In the case of fields $L$ of mixed characteristic, which contain a primitive $p$th root of unity, we show that a similar problem for $\mathbb{F}_p[\Gamma_L]$-modules also admits a solution. In this case we use the field-of-norms functor to construct the corresponding $\phi $-module together with the action of the Galois group of a cyclic extension $L_1$ of $L$ of degree $p$. Then our solution involves the characteristic $p$ part (provided by the field-of-norms functor) and the condition for a “good” lift of a generator of $\operatorname{Gal}(L_1/L)$. Apart from the above differential forms the statement of this condition uses the power series coming from the $p$-adic period of the formal group $\mathbb{G}_m$.
Keywords: local field
Mots-clés : Galois group, ramification filtration.
@article{IM2_2023_87_3_a1,
     author = {V. A. Abrashkin},
     title = {Ramification filtration and differential forms},
     journal = {Izvestiya. Mathematics },
     pages = {421--438},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a1/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - Ramification filtration and differential forms
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 421
EP  - 438
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a1/
LA  - en
ID  - IM2_2023_87_3_a1
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T Ramification filtration and differential forms
%J Izvestiya. Mathematics 
%D 2023
%P 421-438
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a1/
%G en
%F IM2_2023_87_3_a1
V. A. Abrashkin. Ramification filtration and differential forms. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 421-438. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a1/

[1] J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979 | DOI | MR | Zbl

[2] I. R. Šafarevič, “On $p$-extensions”, Mat. Sb., 20(62):2 (1947), 351–363 ; English transl. Amer. Math. Soc. Transl. Ser. 2, 4, Amer. Math. Soc., Providence, RI, 1956, 59–72 | MR | Zbl | DOI

[3] S. P. Demushkin, “The group of a maximal $p$-extension of a local field”, Izv. Akad. Nauk SSSR Ser. Mat., 25:3 (1961), 329–346 | MR | Zbl

[4] U. Jannsen and K. Wingberg, “Die Struktur der absoluten Galoisgruppe $\mathfrak p$-adischer Zahlkörper”, Invent. Math., 70:1 (1982/83), 71–98 | DOI | MR | Zbl

[5] Sh. Mochizuki, “A version of the Grothendieck conjecture for $p$-adic local fields”, Internat. J. Math., 8:4 (1997), 499–506 | DOI | MR | Zbl

[6] V. A. Abrashkin, “On a local analogue of the Grothendieck conjecture”, Internat. J. Math., 11:2 (2000), 133–175 | DOI | MR | Zbl

[7] H. Koch, Galois theory of $p$-extensions, Springer Monogr. Math., Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[8] V. A. Abrashkin, “A ramification filtration of the Galois group of a local field”, Tr. St. Peterbg. Mat. Obs., 3, St. Petersburg Univ., St. Petersburg, 1994; English transl. Proceedings of the St. Petersburg Mathematical Society, v. III, Amer. Math. Soc. Transl. Ser. 2, 166, Amer. Math. Soc., Providence, RI, 1995, 35–100 | MR | Zbl

[9] V. A. Abrashkin, “Ramification filtration of the Galois group of a local field. II”, Number theory, algebra and algebraic geometry, Collection of articles. To seventieth birthday of Academician I. R. Shafarevich, Trudy Mat. Inst. Steklov., 208, Nauka, Fizmatlit, Moscow, 1995, 18–69 ; English transl. Proc. Steklov Inst. Math., 208 (1995), 15–62 | MR | Zbl

[10] V. A. Abrashkin, “A ramification filtration of the Galois group of a local field. III”, Izv. Ross. Akad. Nauk Ser. Mat., 62:5 (1998), 3–48 ; English transl. Izv. Math., 62:5 (1998), 857–900 | DOI | MR | Zbl | DOI

[11] V. Abrashkin, “Groups of automorphisms of local fields of period $p$ and nilpotent class $

$. I”, Internat. J. Math., 28:6 (2017), 1750043 | DOI | MR | Zbl

[12] V. Abrashkin, “Groups of automorphisms of local fields of period $p$ and nilpotent class $

$. II”, Internat. J. Math., 28:10 (2017), 1750066 | DOI | MR | Zbl

[13] V. Abrashkin, “Groups of automorphisms of local fields of period $p^M$ and nilpotent class $

$”, Ann. Inst. Fourier (Grenoble), 67:2 (2017), 605–635 | DOI | MR | Zbl

[14] P. Berthelot and W. Messing, “Théorie de Deudonné cristalline. III. Théorèmes d'équivalence et de pleine fidélité”, The Grothendieck festschrift, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 173–247 | MR | Zbl

[15] M. Lazard, “Sur les groupes nilpotents et les anneaux de Lie”, Ann. Sci. Ecole Norm. Sup. (3), 71:2 (1954), 101–190 | DOI | MR | Zbl

[16] J.-M. Fontaine, “Représentations $p$-adiques des corps locaux. I”, The Grothendieck festschrift, v. 2, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990, 249–309 | MR | Zbl

[17] V. Abrashkin and R. Jenni, “The field-of-norms functor and the Hilbert symbol for higher local fields”, J. Théor. Nombres Bordeaux, 24:1 (2012), 1–39 | DOI | MR | Zbl

[18] V. Abrashkin, “Galois groups of local fields, Lie algebras and ramification”, Arithmetic and geometry, London Math. Soc. Lecture Note Ser., 420, Cambridge Univ. Press, Cambridge, 2015, 1–23 | DOI | MR | Zbl

[19] V. A. Abrashkin, “Ramification filtration via deformations”, Mat. Sb., 212:2 (2021), 3–37 ; English transl. Sb. Math., 212:2 (2021), 135–169 | DOI | MR | Zbl | DOI

[20] A. Bonfiglioli and R. Fulci, Topics in noncommutative algebra, Lecture Notes in Math., 2034, Springer, Heidelberg, 2012 | DOI | MR | Zbl

[21] K. Imai, Ramification groups of some finite Galois extensions of maximal nilpotency class over local fields of positive characteristic, arXiv: 2102.07928