Ramification filtration and differential forms
Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 421-438

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a complete discrete valuation field of prime characteristic $p$ with finite residue field. Denote by $\Gamma_{L}^{(v)}$ the ramification subgroups of $\Gamma_{L}=\operatorname{Gal}(L^{\mathrm{sep}}/L)$. We consider the category $\operatorname{M\Gamma}_{L}^{\mathrm{Lie}}$ of finite $\mathbb{Z}_p[\Gamma_{L}]$-modules $H$, satisfying some additional (Lie)-condition on the image of $\Gamma_L$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$. In the paper it is proved that all information about the images of the groups $\Gamma_L^{(v)}$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$ can be explicitly extracted from some differential forms $\widetilde{\Omega} [N]$ on the Fontaine etale $\phi $-module $M(H)$ associated with $H$. The forms $\widetilde{\Omega}[N]$ are completely determined by a canonical connection $\nabla $ on $M(H)$. In the case of fields $L$ of mixed characteristic, which contain a primitive $p$th root of unity, we show that a similar problem for $\mathbb{F}_p[\Gamma_L]$-modules also admits a solution. In this case we use the field-of-norms functor to construct the corresponding $\phi $-module together with the action of the Galois group of a cyclic extension $L_1$ of $L$ of degree $p$. Then our solution involves the characteristic $p$ part (provided by the field-of-norms functor) and the condition for a “good” lift of a generator of $\operatorname{Gal}(L_1/L)$. Apart from the above differential forms the statement of this condition uses the power series coming from the $p$-adic period of the formal group $\mathbb{G}_m$.
Keywords: local field
Mots-clés : Galois group, ramification filtration.
@article{IM2_2023_87_3_a1,
     author = {V. A. Abrashkin},
     title = {Ramification filtration and differential forms},
     journal = {Izvestiya. Mathematics },
     pages = {421--438},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a1/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - Ramification filtration and differential forms
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 421
EP  - 438
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a1/
LA  - en
ID  - IM2_2023_87_3_a1
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T Ramification filtration and differential forms
%J Izvestiya. Mathematics 
%D 2023
%P 421-438
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a1/
%G en
%F IM2_2023_87_3_a1
V. A. Abrashkin. Ramification filtration and differential forms. Izvestiya. Mathematics , Tome 87 (2023) no. 3, pp. 421-438. http://geodesic.mathdoc.fr/item/IM2_2023_87_3_a1/