Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_2_a3, author = {T. I. Zaitseva}, title = {Multivariate tile $\mathrm{B}$-splines}, journal = {Izvestiya. Mathematics }, pages = {284--325}, publisher = {mathdoc}, volume = {87}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a3/} }
T. I. Zaitseva. Multivariate tile $\mathrm{B}$-splines. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 284-325. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a3/
[1] C. de Boor, A practical guide to splines, Appl. Math. Sci., 27, Springer-Verlag, New York–Berlin, 1978 ; Russian transl. Radio i Svyaz', Moscow, 1985 | MR | Zbl | MR
[2] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992 ; Russian transl. Research Centre “Regular and Chaotic Dynamics”, Moscow, Izhevsk, 2001 | DOI | MR | Zbl | Zbl
[3] I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet theory, Fizmatlit, Moscow, 2005 ; English transl. Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl | DOI | MR | Zbl
[4] P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR | Zbl
[5] A. Yu. Shadrin, “The $L_{\infty}$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: a proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl
[6] C. de Boor, R. A. DeVore, and A. Ron, “On the construction of multivariate (pre)wavelets”, Constr. Approx., 9:2-3 (1993), 123–166 | DOI | MR | Zbl
[7] V. Yu. Protasov, “Fractal curves and wavelets”, Izv. Ross. Akad. Nauk Ser. Mat., 70:5 (2006), 123–162 ; English transl. Izv. Math., 70:5 (2006), 975–1013 | DOI | MR | Zbl | DOI
[8] P. A. Terekhin, “Best approximation of functions in $L_p$ by polynomials on affine system”, Mat. Sb., 202:2 (2011), 131–158 ; English transl. Sb. Math., 202:2 (2011), 279–306 | DOI | MR | Zbl | DOI
[9] C. De Boor, K. Höllig, and S. Riemenschneider, Box splines, Appl. Math. Sci., 98, Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[10] M. Charina, C. Conti, K. Jetter, and G. Zimmermann, “Scalar multivariate subdivision schemes and box splines”, Comput. Aided Geom. Design, 28:5 (2011), 285–306 | DOI | MR | Zbl
[11] D. Van de Ville, T. Blu, and M. Unser, “Isotropic polyharmonic B-splines: scaling functions and wavelets”, IEEE Trans. Image Process., 14:11 (2005), 1798–1813 | DOI | MR
[12] V. G. Zakharov, “Elliptic scaling functions as compactly supported multivariate analogs of the B-splines”, Int. J. Wavelets Multiresolut. Inf. Process., 12:02 (2014), 1450018 | DOI | MR | Zbl
[13] S. Zube, “Number systems, $\alpha$-splines and refinement”, J. Comput. Appl. Math., 172:2 (2004), 207–231 | DOI | MR | Zbl
[14] J. Lagarias and Yang Wang, “Integral self-affine tiles in $\mathbb{R}^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102 | DOI | MR | Zbl
[15] K. Gröchenig and A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl
[16] K. Gröchenig and W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of $\mathbb{R}^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568 | DOI | MR | Zbl
[17] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl
[18] E. Catmull and J. Clark, “Recursively generated B-spline surfaces on arbitrary topological meshes”, Comput.-Aided Des., 10:6 (1978), 350–355 | DOI
[19] T. Zaitseva, Tile_Bsplines https://github.com/TZZZZ/Tile_Bsplines
[20] C. A. Cabrelli, C. Heil, and U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[21] A. Krivoshein, V. Protasov, and M. Skopina, Multivariate wavelet frames, Ind. Appl. Math., Springer, Singapore, 2016 | DOI | MR | Zbl
[22] G. Strang and G. Fix, “A Fourier analysis of the finite element variational method”, Constructive aspects of functional analysis (Erice, 1971), C.I.M.E. Summer Schools, 57, Cremonese, 1973, 793–840 | DOI | MR | Zbl
[23] C. de Boor, R. A. DeVore, and A. Ron, “The structure of finitely generated shift-invariant spaces in $L_2(\mathbb{R}^d)$”, J. Funct. Anal., 119:1 (1994), 37–78 | DOI | MR | Zbl
[24] C. de Boor, R. Devore, and A. Ron, “Approximation from shift-invariant subspaces of $L_2(\mathbb{R}^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806 | DOI | MR | Zbl
[25] I. Kirat and Ka-Sing Lau, “On the connectedness of self-affine tiles”, J. London Math. Soc. (2), 62:1 (2000), 291–304 | DOI | MR | Zbl
[26] C. Bandt and G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593 | DOI | MR | Zbl
[27] G. Gelbrich, “Self-affine lattice reptiles with two pieces in $\mathbb{R}^n$”, Math. Nachr., 178 (1996), 129–134 | DOI | MR | Zbl
[28] W. J. Gilbert, “Radix representations of quadratic fields”, J. Math. Anal. Appl., 83:1 (1981), 264–274 | DOI | MR | Zbl
[29] R. F. Gundy and A. L. Jonsson, “Scaling functions on $\mathbb{R}^2$ for dilations of determinant $\pm 2$”, Appl. Comput. Harmon. Anal., 29:1 (2010), 49–62 | DOI | MR | Zbl
[30] C. Bandt, Combinatorial topology of three-dimensional self-affine tiles, arXiv: 1002.0710
[31] C. Bandt, “Self-similar sets. 5. Integer matrices and fractal tilings of $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 112:2 (1991), 549–562 | DOI | MR | Zbl
[32] Xiaoye Fu and J.-P. Gabardo, Self-affine scaling sets in $\mathbb R^2$, Mem. Amer. Math. Soc., 233, no. 1097, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[33] J. C. Lagarias and Yang Wang, “Haar type orthonormal wavelet bases in $\mathbf{R}^2$”, J. Fourier Anal. Appl., 2:1 (1995), 1–14 | DOI | MR | Zbl
[34] T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57 | DOI
[35] V. G. Zakharov, “Rotation properties of 2D isotropic dilation matrices”, Int. J. Wavelets Multiresolut. Inf. Process., 16:1 (2018), 1850001 | DOI | MR | Zbl
[36] T. I. Zaitseva and V. Yu. Protasov, “Self-affine 2-attractors and tiles”, Mat. Sb., 213:6 (2022), 71–110 ; English transl. Sb. Math., 213:6 (2022), 794–830, arXiv: 2007.11279 | DOI | MR | DOI
[37] B. V. Shabat, Introduction to complex analysis, v. 1, 2, 3rd ed., Nauka, Moscow, 1985 (Russian) ; French transl. of 3rd ed. Introduction à l'analyse complexe, v. 1, 2, Traduit Russe Math., Mir, Moscow, 1990 | MR | MR | Zbl | MR | MR | Zbl
[38] M. Charina and V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821 | DOI | MR | Zbl
[39] M. Charina and Th. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291 | DOI | MR | Zbl
[40] M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk, 3, no. 1(23), 1948 ; English transl. Amer. Math. Soc. Translation, 26, Amer. Math. Soc., New York, 1950 | MR | Zbl | MR
[41] V. Yu. Protasov, “The generalized joint spectral radius. A geometric approach”, Izv. Ross. Akad. Nauk Ser. Mat., 61:5 (1997), 99–136 ; English transl. Izv. Math., 61:5 (1997), 995–1030 | DOI | MR | Zbl | DOI
[42] V. D. Blondel and Yu. Nesterov, “Computationally efficient approximations of the joint spectral radius”, SIAM J. Matrix Anal. Appl., 27:1 (2005), 256–272 | DOI | MR | Zbl
[43] V. D. Blondel, S. Gaubert, and J. N. Tsitsiklis, “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765 | DOI | MR | Zbl
[44] N. Guglielmi and V. Protasov, “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97 | DOI | MR | Zbl
[45] T. Mejstrik, “Algorithm 1011: improved invariant polytope algorithm and applications”, ACM Trans. Math. Software, 46:3 (2020), 29 | DOI | MR | Zbl
[46] P. Oswald, “Designing composite triangular subdivision schemes”, Comput. Aided Geom. Design, 22:7 (2005), 659–679 | DOI | MR | Zbl
[47] P. Oswald and P. Schröder, “Composite primal/dual $\sqrt{3}$-subdivision schemes”, Comput. Aided Geom. Design, 20:3 (2003), 135–164 | DOI | MR | Zbl
[48] Qingtang Jiang and P. Oswald, “Triangular $\sqrt 3$-subdivision schemes: the regular case”, J. Comput. Appl. Math., 156:1 (2003), 47–75 | DOI | MR | Zbl
[49] T. I. Zaitseva, “Simple tiles and attractors”, Mat. Sb., 211:9 (2020), 24–59 ; English transl. Sb. Math., 211:9 (2020), 1233–1266 | DOI | MR | Zbl | DOI
[50] M. Charina, C. Conti, and T. Sauer, “Regularity of multivariate vector subdivision schemes”, Numer. Algorithms, 39:1-3 (2005), 97–113 | DOI | MR | Zbl
[51] N. Dyn and D. Levin, “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002) | DOI | MR | Zbl
[52] V. Protasov, “The stability of subdivision operator at its fixed point”, SIAM J. Math. Anal., 33:2 (2001), 448–460 | DOI | MR | Zbl
[53] C. Conti and K. Jetter, “Concerning order of convergence for subdivision”, Numer. Algorithms, 36:4 (2004), 345–363 | DOI | MR | Zbl
[54] A. Cohen, K. Gröchenig, and L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255 | DOI | MR | Zbl
[55] D. Mekhontsev, IFStile software http://ifstile.com