Multivariate tile $\mathrm{B}$-splines
Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 284-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tile $\mathrm{B}$-splines in $\mathbb R^d$ are defined as autoconvolutions of indicators of tiles, which are special self-similar compact sets whose integer translates tile the space $\mathbb R^d$. These functions are not piecewise-polynomial, however, being direct generalizations of the classical $\mathrm{B}$-splines, they enjoy many of their properties and have some advantages. In particular, exact values of the Hölder exponents of tile $\mathrm{B}$-splines are evaluated and are shown, in some cases, to exceed those of the classical $\mathrm{B}$-splines. Orthonormal systems of wavelets based on tile B-splines are constructed, and estimates of their exponential decay are obtained. Efficiency in applications of tile $\mathrm{B}$-splines is demonstrated on an example of subdivision schemes of surfaces. This efficiency is achieved due to high regularity, fast convergence, and small number of coefficients in the corresponding refinement equation.
Keywords: $\mathrm{B}$-spline, self-affine tiling, subdivision scheme, wavelet, Hölder regularity, joint spectral radius.
Mots-clés : tile
@article{IM2_2023_87_2_a3,
     author = {T. I. Zaitseva},
     title = {Multivariate tile $\mathrm{B}$-splines},
     journal = {Izvestiya. Mathematics },
     pages = {284--325},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a3/}
}
TY  - JOUR
AU  - T. I. Zaitseva
TI  - Multivariate tile $\mathrm{B}$-splines
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 284
EP  - 325
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a3/
LA  - en
ID  - IM2_2023_87_2_a3
ER  - 
%0 Journal Article
%A T. I. Zaitseva
%T Multivariate tile $\mathrm{B}$-splines
%J Izvestiya. Mathematics 
%D 2023
%P 284-325
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a3/
%G en
%F IM2_2023_87_2_a3
T. I. Zaitseva. Multivariate tile $\mathrm{B}$-splines. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 284-325. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a3/

[1] C. de Boor, A practical guide to splines, Appl. Math. Sci., 27, Springer-Verlag, New York–Berlin, 1978 ; Russian transl. Radio i Svyaz', Moscow, 1985 | MR | Zbl | MR

[2] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992 ; Russian transl. Research Centre “Regular and Chaotic Dynamics”, Moscow, Izhevsk, 2001 | DOI | MR | Zbl | Zbl

[3] I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet theory, Fizmatlit, Moscow, 2005 ; English transl. Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011 | MR | Zbl | DOI | MR | Zbl

[4] P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR | Zbl

[5] A. Yu. Shadrin, “The $L_{\infty}$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: a proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl

[6] C. de Boor, R. A. DeVore, and A. Ron, “On the construction of multivariate (pre)wavelets”, Constr. Approx., 9:2-3 (1993), 123–166 | DOI | MR | Zbl

[7] V. Yu. Protasov, “Fractal curves and wavelets”, Izv. Ross. Akad. Nauk Ser. Mat., 70:5 (2006), 123–162 ; English transl. Izv. Math., 70:5 (2006), 975–1013 | DOI | MR | Zbl | DOI

[8] P. A. Terekhin, “Best approximation of functions in $L_p$ by polynomials on affine system”, Mat. Sb., 202:2 (2011), 131–158 ; English transl. Sb. Math., 202:2 (2011), 279–306 | DOI | MR | Zbl | DOI

[9] C. De Boor, K. Höllig, and S. Riemenschneider, Box splines, Appl. Math. Sci., 98, Springer-Verlag, New York, 1993 | DOI | MR | Zbl

[10] M. Charina, C. Conti, K. Jetter, and G. Zimmermann, “Scalar multivariate subdivision schemes and box splines”, Comput. Aided Geom. Design, 28:5 (2011), 285–306 | DOI | MR | Zbl

[11] D. Van de Ville, T. Blu, and M. Unser, “Isotropic polyharmonic B-splines: scaling functions and wavelets”, IEEE Trans. Image Process., 14:11 (2005), 1798–1813 | DOI | MR

[12] V. G. Zakharov, “Elliptic scaling functions as compactly supported multivariate analogs of the B-splines”, Int. J. Wavelets Multiresolut. Inf. Process., 12:02 (2014), 1450018 | DOI | MR | Zbl

[13] S. Zube, “Number systems, $\alpha$-splines and refinement”, J. Comput. Appl. Math., 172:2 (2004), 207–231 | DOI | MR | Zbl

[14] J. Lagarias and Yang Wang, “Integral self-affine tiles in $\mathbb{R}^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102 | DOI | MR | Zbl

[15] K. Gröchenig and A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl

[16] K. Gröchenig and W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of $\mathbb{R}^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568 | DOI | MR | Zbl

[17] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | Zbl

[18] E. Catmull and J. Clark, “Recursively generated B-spline surfaces on arbitrary topological meshes”, Comput.-Aided Des., 10:6 (1978), 350–355 | DOI

[19] T. Zaitseva, Tile_Bsplines https://github.com/TZZZZ/Tile_Bsplines

[20] C. A. Cabrelli, C. Heil, and U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[21] A. Krivoshein, V. Protasov, and M. Skopina, Multivariate wavelet frames, Ind. Appl. Math., Springer, Singapore, 2016 | DOI | MR | Zbl

[22] G. Strang and G. Fix, “A Fourier analysis of the finite element variational method”, Constructive aspects of functional analysis (Erice, 1971), C.I.M.E. Summer Schools, 57, Cremonese, 1973, 793–840 | DOI | MR | Zbl

[23] C. de Boor, R. A. DeVore, and A. Ron, “The structure of finitely generated shift-invariant spaces in $L_2(\mathbb{R}^d)$”, J. Funct. Anal., 119:1 (1994), 37–78 | DOI | MR | Zbl

[24] C. de Boor, R. Devore, and A. Ron, “Approximation from shift-invariant subspaces of $L_2(\mathbb{R}^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806 | DOI | MR | Zbl

[25] I. Kirat and Ka-Sing Lau, “On the connectedness of self-affine tiles”, J. London Math. Soc. (2), 62:1 (2000), 291–304 | DOI | MR | Zbl

[26] C. Bandt and G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593 | DOI | MR | Zbl

[27] G. Gelbrich, “Self-affine lattice reptiles with two pieces in $\mathbb{R}^n$”, Math. Nachr., 178 (1996), 129–134 | DOI | MR | Zbl

[28] W. J. Gilbert, “Radix representations of quadratic fields”, J. Math. Anal. Appl., 83:1 (1981), 264–274 | DOI | MR | Zbl

[29] R. F. Gundy and A. L. Jonsson, “Scaling functions on $\mathbb{R}^2$ for dilations of determinant $\pm 2$”, Appl. Comput. Harmon. Anal., 29:1 (2010), 49–62 | DOI | MR | Zbl

[30] C. Bandt, Combinatorial topology of three-dimensional self-affine tiles, arXiv: 1002.0710

[31] C. Bandt, “Self-similar sets. 5. Integer matrices and fractal tilings of $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 112:2 (1991), 549–562 | DOI | MR | Zbl

[32] Xiaoye Fu and J.-P. Gabardo, Self-affine scaling sets in $\mathbb R^2$, Mem. Amer. Math. Soc., 233, no. 1097, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[33] J. C. Lagarias and Yang Wang, “Haar type orthonormal wavelet bases in $\mathbf{R}^2$”, J. Fourier Anal. Appl., 2:1 (1995), 1–14 | DOI | MR | Zbl

[34] T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57 | DOI

[35] V. G. Zakharov, “Rotation properties of 2D isotropic dilation matrices”, Int. J. Wavelets Multiresolut. Inf. Process., 16:1 (2018), 1850001 | DOI | MR | Zbl

[36] T. I. Zaitseva and V. Yu. Protasov, “Self-affine 2-attractors and tiles”, Mat. Sb., 213:6 (2022), 71–110 ; English transl. Sb. Math., 213:6 (2022), 794–830, arXiv: 2007.11279 | DOI | MR | DOI

[37] B. V. Shabat, Introduction to complex analysis, v. 1, 2, 3rd ed., Nauka, Moscow, 1985 (Russian) ; French transl. of 3rd ed. Introduction à l'analyse complexe, v. 1, 2, Traduit Russe Math., Mir, Moscow, 1990 | MR | MR | Zbl | MR | MR | Zbl

[38] M. Charina and V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821 | DOI | MR | Zbl

[39] M. Charina and Th. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291 | DOI | MR | Zbl

[40] M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk, 3, no. 1(23), 1948 ; English transl. Amer. Math. Soc. Translation, 26, Amer. Math. Soc., New York, 1950 | MR | Zbl | MR

[41] V. Yu. Protasov, “The generalized joint spectral radius. A geometric approach”, Izv. Ross. Akad. Nauk Ser. Mat., 61:5 (1997), 99–136 ; English transl. Izv. Math., 61:5 (1997), 995–1030 | DOI | MR | Zbl | DOI

[42] V. D. Blondel and Yu. Nesterov, “Computationally efficient approximations of the joint spectral radius”, SIAM J. Matrix Anal. Appl., 27:1 (2005), 256–272 | DOI | MR | Zbl

[43] V. D. Blondel, S. Gaubert, and J. N. Tsitsiklis, “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765 | DOI | MR | Zbl

[44] N. Guglielmi and V. Protasov, “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97 | DOI | MR | Zbl

[45] T. Mejstrik, “Algorithm 1011: improved invariant polytope algorithm and applications”, ACM Trans. Math. Software, 46:3 (2020), 29 | DOI | MR | Zbl

[46] P. Oswald, “Designing composite triangular subdivision schemes”, Comput. Aided Geom. Design, 22:7 (2005), 659–679 | DOI | MR | Zbl

[47] P. Oswald and P. Schröder, “Composite primal/dual $\sqrt{3}$-subdivision schemes”, Comput. Aided Geom. Design, 20:3 (2003), 135–164 | DOI | MR | Zbl

[48] Qingtang Jiang and P. Oswald, “Triangular $\sqrt 3$-subdivision schemes: the regular case”, J. Comput. Appl. Math., 156:1 (2003), 47–75 | DOI | MR | Zbl

[49] T. I. Zaitseva, “Simple tiles and attractors”, Mat. Sb., 211:9 (2020), 24–59 ; English transl. Sb. Math., 211:9 (2020), 1233–1266 | DOI | MR | Zbl | DOI

[50] M. Charina, C. Conti, and T. Sauer, “Regularity of multivariate vector subdivision schemes”, Numer. Algorithms, 39:1-3 (2005), 97–113 | DOI | MR | Zbl

[51] N. Dyn and D. Levin, “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002) | DOI | MR | Zbl

[52] V. Protasov, “The stability of subdivision operator at its fixed point”, SIAM J. Math. Anal., 33:2 (2001), 448–460 | DOI | MR | Zbl

[53] C. Conti and K. Jetter, “Concerning order of convergence for subdivision”, Numer. Algorithms, 36:4 (2004), 345–363 | DOI | MR | Zbl

[54] A. Cohen, K. Gröchenig, and L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255 | DOI | MR | Zbl

[55] D. Mekhontsev, IFStile software http://ifstile.com