Green energy of discrete signed measure on concentric circles
Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 265-283

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the difference between the Green energy of a discrete signed measure relative to a circular annulus concentrated at some points on concentric circles and the energy of the signed measure at symmetric points is non-decreasing during the expansion of the annulus. As a corollary, generalizations of the classical Pólya–Schur inequality for complex numbers are obtained. Some open problems are formulated.
Keywords: Green function, Green energy, capacity of condensers, dissymmetrization, inequality.
@article{IM2_2023_87_2_a2,
     author = {V. N. Dubinin},
     title = {Green energy of discrete signed measure on concentric circles},
     journal = {Izvestiya. Mathematics },
     pages = {265--283},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a2/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Green energy of discrete signed measure on concentric circles
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 265
EP  - 283
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a2/
LA  - en
ID  - IM2_2023_87_2_a2
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Green energy of discrete signed measure on concentric circles
%J Izvestiya. Mathematics 
%D 2023
%P 265-283
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a2/
%G en
%F IM2_2023_87_2_a2
V. N. Dubinin. Green energy of discrete signed measure on concentric circles. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 265-283. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a2/