Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_2_a1, author = {O. N. German and N. G. Moshchevitin}, title = {On the transference principle and {Nesterenko's} linear independence criterion}, journal = {Izvestiya. Mathematics }, pages = {252--264}, publisher = {mathdoc}, volume = {87}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/} }
TY - JOUR AU - O. N. German AU - N. G. Moshchevitin TI - On the transference principle and Nesterenko's linear independence criterion JO - Izvestiya. Mathematics PY - 2023 SP - 252 EP - 264 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/ LA - en ID - IM2_2023_87_2_a1 ER -
O. N. German; N. G. Moshchevitin. On the transference principle and Nesterenko's linear independence criterion. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 252-264. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/
[1] Yu. V. Nesterenko, “On the linear independence of numbers”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 1, 46–49 ; English transl. Moscow Univ. Math. Bull., 40:1 (1985), 69–74 | MR | Zbl
[2] A. Khintchine, “Über eine Klasse linearer Diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50 (1926), 170–195 | DOI | Zbl
[3] V. Jarník, “Zum Khintchineschen “Übertragungssatz””, Trav. Inst. Math. Tbilissi, 3 (1938), 193–216 | Zbl
[4] Y. Bugeaud and M. Laurent, “Exponents of Diophantine approximation”, Diophantine geometry, CRM Series, 4, Ed. Norm., Pisa, 2007, 101–121 | MR | Zbl
[5] Y. Bugeaud and M. Laurent, “On transfer inequalities in Diophantine approximation. II”, Math. Z., 265:2 (2010), 249–262 | DOI | MR | Zbl
[6] O. N. German, “Intermediate Diophantine exponents and parametric geometry of numbers”, Acta Arith., 154:1 (2012), 79–101 | DOI | MR | Zbl
[7] O. N. German, “On Diophantine exponents and Khintchine's transference principle”, Mosc. J. Comb. Number Theory, 2:2 (2012), 22–51 | MR | Zbl
[8] W. M. Schmidt and L. Summerer, “Diophantine approximation and parametric geometry of numbers”, Monatsh. Math., 169:1 (2013), 51–104 | DOI | MR | Zbl
[9] O. N. German and N. G. Moshchevitin, “A simple proof of Schmidt–Summerer's inequality”, Monatsh. Math., 170:3-4 (2013), 361–370 | DOI | MR | Zbl
[10] V. Jarník, “Une remarque sur les approximations diophantiennes linéaires”, Acta Sci. Math. (Szeged), 12 B (1950), 82–86 | MR | Zbl
[11] V. Jarník, “Contribution à la théorie des approximations diophantiennes linéaires et homogènes”, Czechoslovak Math. J., 4:79 (1954), 330–353 | MR | Zbl
[12] A. Marnat and N. G. Moshchevitin, “An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation”, Mathematika, 66:3 (2020), 818–854 | DOI | MR
[13] Ngoc Ai Van Nguyen, A. Poëls, and D. Roy, “A transference principle for simultaneous rational approximation”, J. Théor. Nombres Bordeaux, 32:2 (2020), 387–402 | DOI | MR | Zbl
[14] J. Schleischitz, “On geometry of numbers and uniform rational approximation to the Veronese curve”, Period. Math. Hung., 83:2 (2021), 233–249 ; arXiv: 1911.03215 | DOI | MR | Zbl
[15] J. Schleischitz, “Optimality of two inequalities for exponents of Diophantine approximation”, J. Number Theory, 244 (2023), 169–203 ; arXiv: 2102.03154 | DOI | MR
[16] D. Kleinbock, N. Moshchevitin, and B. Weiss, “Singular vectors on manifolds and fractals”, Israel J. Math., 245:2 (2021), 589–613 ; arXiv: 1912.13070 | DOI | MR | Zbl
[17] S. Fischler and W. Zudilin, “A refinement of Nesterenko's linear independence criterion with applications to zeta values”, Math. Ann., 347:4 (2010), 739–763 | DOI | MR | Zbl
[18] A. Chantanasiri, “On the criteria for linear independence of Nesterenko, Fischler and Zudilin”, Chamchuri J. Math., 2:1 (2010), 31–46 | MR | Zbl
[19] S. Fischler and T. Rivoal, “Irrationality exponent and rational approximations with prescribed growth”, Proc. Amer. Math. Soc., 138:3 (2010), 799–808 | DOI | MR | Zbl