On the transference principle and Nesterenko's linear independence criterion
Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 252-264

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of simultaneous approximation of real numbers $\theta_1, \dots,\theta_n$ by rationals and the dual problem of approximating zero by the values of the linear form $x_0+\theta_1x_1+\dots+\theta_nx_n$ at integer points. In this setting we analyse two transference inequalities obtained by Schmidt and Summerer. We present a rather simple geometric observation which proves their result. We also derive several previously unknown corollaries. In particular, we show that, together with German's inequalities for uniform exponents, Schmidt and Summerer's inequalities imply the inequalities by Bugeaud and Laurent and “one half” of the inequalities by Marnat and Moshchevitin. Moreover, we show that our main construction provides a rather simple proof of Nesterenko's linear independence criterion.
Keywords: Diophantine exponents, transference inequalities, linear independence criterion.
Mots-clés : Diophantine approximation
@article{IM2_2023_87_2_a1,
     author = {O. N. German and N. G. Moshchevitin},
     title = {On the transference principle and {Nesterenko's} linear independence criterion},
     journal = {Izvestiya. Mathematics },
     pages = {252--264},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/}
}
TY  - JOUR
AU  - O. N. German
AU  - N. G. Moshchevitin
TI  - On the transference principle and Nesterenko's linear independence criterion
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 252
EP  - 264
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/
LA  - en
ID  - IM2_2023_87_2_a1
ER  - 
%0 Journal Article
%A O. N. German
%A N. G. Moshchevitin
%T On the transference principle and Nesterenko's linear independence criterion
%J Izvestiya. Mathematics 
%D 2023
%P 252-264
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/
%G en
%F IM2_2023_87_2_a1
O. N. German; N. G. Moshchevitin. On the transference principle and Nesterenko's linear independence criterion. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 252-264. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/