On the transference principle and Nesterenko's linear independence criterion
Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 252-264
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of simultaneous approximation of real numbers $\theta_1,
\dots,\theta_n$ by
rationals and the dual problem of approximating zero by
the values of the linear form $x_0+\theta_1x_1+\dots+\theta_nx_n$ at
integer points. In this setting we analyse two transference inequalities
obtained by Schmidt and Summerer. We present a rather simple geometric
observation
which proves their result. We also derive several
previously unknown corollaries. In particular,
we show that, together with German's
inequalities for uniform exponents, Schmidt and Summerer's inequalities imply
the inequalities by Bugeaud and Laurent and “one half” of the inequalities
by Marnat and Moshchevitin. Moreover,
we show that our main construction
provides a rather simple proof of Nesterenko's linear independence
criterion.
Keywords:
Diophantine exponents, transference inequalities,
linear independence criterion.
Mots-clés : Diophantine approximation
Mots-clés : Diophantine approximation
@article{IM2_2023_87_2_a1,
author = {O. N. German and N. G. Moshchevitin},
title = {On the transference principle and {Nesterenko's} linear independence criterion},
journal = {Izvestiya. Mathematics },
pages = {252--264},
publisher = {mathdoc},
volume = {87},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/}
}
TY - JOUR AU - O. N. German AU - N. G. Moshchevitin TI - On the transference principle and Nesterenko's linear independence criterion JO - Izvestiya. Mathematics PY - 2023 SP - 252 EP - 264 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/ LA - en ID - IM2_2023_87_2_a1 ER -
O. N. German; N. G. Moshchevitin. On the transference principle and Nesterenko's linear independence criterion. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 252-264. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a1/