A solution to the multidimensional additive homological equation
Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 201-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for a finite-dimensional real normed space $V$, every bounded mean zero function $f\in L_\infty([0,1];V)$ can be written in the form $f=g\circ T-g$ for some $g\in L_\infty([0,1];V)$ and some ergodic invertible measure preserving transformation $T$ of $[0,1]$. Our method moreover allows us to choose $g$, for any given $\varepsilon>0$, to be such that $\|g\|_\infty\leq (S_V+\varepsilon)\|f\|_\infty$, where $S_V$ is the Steinitz constant corresponding to $V$.
Keywords: additive homological equation, coboundary problem, measure preserving transformation.
Mots-clés : Kwapień's theorem, Steinitz constant
@article{IM2_2023_87_2_a0,
     author = {A. F. Ber and M. Borst and S. Borst and F. A. Sukochev},
     title = {A solution to the multidimensional additive homological equation},
     journal = {Izvestiya. Mathematics },
     pages = {201--251},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a0/}
}
TY  - JOUR
AU  - A. F. Ber
AU  - M. Borst
AU  - S. Borst
AU  - F. A. Sukochev
TI  - A solution to the multidimensional additive homological equation
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 201
EP  - 251
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a0/
LA  - en
ID  - IM2_2023_87_2_a0
ER  - 
%0 Journal Article
%A A. F. Ber
%A M. Borst
%A S. Borst
%A F. A. Sukochev
%T A solution to the multidimensional additive homological equation
%J Izvestiya. Mathematics 
%D 2023
%P 201-251
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a0/
%G en
%F IM2_2023_87_2_a0
A. F. Ber; M. Borst; S. Borst; F. A. Sukochev. A solution to the multidimensional additive homological equation. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 201-251. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a0/

[1] D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Izv. Akad. Nauk SSSR Ser. Mat., 37:6 (1973), 1259–1274 ; English transl. Izv. Math., 7:6 (1973), 1257–1271 | MR | Zbl | DOI

[2] A. N. Kolmogorov, “On dynamical systems with an integral invariant on the torus”, Dokl. Akad. Nauk SSSR, 93:5 (1953), 763–766 (Russian) | MR | Zbl

[3] J. Bourgain, “Translation invariant forms on $L^p(G)$ ($1

\infty$)”, Ann. Inst. Fourier (Grenoble), 36:1 (1986), 97–104 | DOI | MR | Zbl

[4] F. E. Browder, “On the iteration of transformations in noncompact minimal dynamical systems”, Proc. Amer. Math. Soc., 9:5 (1958), 773–780 | DOI | MR | Zbl

[5] T. Adams and J. Rosenblatt, “Joint coboundaries”, Dynamical systems, ergodic theory, and probability: in memory of Kolya Chernov, Contemp. Math., 698, Amer. Math. Soc., Providence, RI, 2017, 5–33 | DOI | MR | Zbl

[6] T. Adams and J. Rosenblatt, Existence and non-existence of solutions to the coboundary equation for measure preserving systems, arXiv: 1902.09045

[7] A. Ber, M. Borst, and F. Sukochev, “Full proof of Kwapień's theorem on representing bounded mean zero functions on $[0,1]$”, Studia Math., 259:3 (2021), 241–270 | DOI | MR | Zbl

[8] S. Kwapień, “Linear functionals invariant under measure preserving transformations”, Math. Nachr., 119:1 (1984), 175–179 | DOI | MR | Zbl

[9] T. Figiel and N. Kalton, “Symmetric linear functionals on function spaces”, Function spaces, interpolation theory and related topics (Lund 2000), de Gruyter, Berlin, 2002, 311–332 | DOI | MR | Zbl

[10] S. Lord, F. Sukochev, and D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013 | DOI | MR | Zbl

[11] M. I. Kadets and V. M. Kadets, Series in Banach spaces. Conditional and unconditional convergence, Oper. Theory Adv. Appl., 94, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[12] V. I. Bogachev, Measure theory, v. 1, 2, Research Centre “Regular and Chaotic Dynamics”, Moscow, Izhevsk, 2003; English transl. v. I, II, Springer-Verlag, Berlin, 2007 | DOI | MR | Zbl

[13] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[14] E. Steinitz, “Bedingt konvergente Reihen und konvexe Systeme”, J. Reine Angew. Math., 1913:143 (1913), 128–176 | DOI | MR | Zbl

[15] V. S. Grinberg and S. V. Sevast'yanov, “Value of the Steinitz constant”, Funktsional. Anal. i Prilozhen., 14:2 (1980), 56–57 ; English transl. Funct. Anal. Appl., 14:2 (1980), 125–126 | MR | Zbl | DOI

[16] W. Banaszczyk, “The Steinitz constant of the plane”, J. Reine Angew. Math., 1987:373 (1987), 218–220 | DOI | MR | Zbl

[17] W. Banaszczyk, “A note on the Steinitz constant of the Euclidean plane”, C. R. Math. Rep. Acad. Sci. Canada, 12:4 (1990), 97–102 | MR | Zbl

[18] W. Banaszczyk, “The Steinitz theorem on rearrangement of series for nuclear spaces”, J. Reine Angew. Math., 1990:403 (1990), 187–200 | DOI | MR | Zbl

[19] I. Bárány and V. S. Grinberg, “On some combinatorial questions in finite-dimensional spaces”, Linear Algebra Appl., 41:3 (1981), 1–9 | DOI | MR | Zbl

[20] B. Simon, Convexity. An analytic viewpoint, Cambridge Tracts in Math., 187, Cambridge Univ. Press, Cambridge, 2011 | DOI | MR | Zbl

[21] J. B. Conway, A course in functional analysis, Grad. Texts in Math., 96, 2nd ed., Springer-Verlag, New York, 1990 | DOI | MR | Zbl

[22] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford Univ. Press, Oxford, 2008 | MR | Zbl