A solution to the multidimensional additive homological equation
Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 201-251

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for a finite-dimensional real normed space $V$, every bounded mean zero function $f\in L_\infty([0,1];V)$ can be written in the form $f=g\circ T-g$ for some $g\in L_\infty([0,1];V)$ and some ergodic invertible measure preserving transformation $T$ of $[0,1]$. Our method moreover allows us to choose $g$, for any given $\varepsilon>0$, to be such that $\|g\|_\infty\leq (S_V+\varepsilon)\|f\|_\infty$, where $S_V$ is the Steinitz constant corresponding to $V$.
Keywords: additive homological equation, coboundary problem, measure preserving transformation.
Mots-clés : Kwapień's theorem, Steinitz constant
@article{IM2_2023_87_2_a0,
     author = {A. F. Ber and M. Borst and S. Borst and F. A. Sukochev},
     title = {A solution to the multidimensional additive homological equation},
     journal = {Izvestiya. Mathematics },
     pages = {201--251},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a0/}
}
TY  - JOUR
AU  - A. F. Ber
AU  - M. Borst
AU  - S. Borst
AU  - F. A. Sukochev
TI  - A solution to the multidimensional additive homological equation
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 201
EP  - 251
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a0/
LA  - en
ID  - IM2_2023_87_2_a0
ER  - 
%0 Journal Article
%A A. F. Ber
%A M. Borst
%A S. Borst
%A F. A. Sukochev
%T A solution to the multidimensional additive homological equation
%J Izvestiya. Mathematics 
%D 2023
%P 201-251
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a0/
%G en
%F IM2_2023_87_2_a0
A. F. Ber; M. Borst; S. Borst; F. A. Sukochev. A solution to the multidimensional additive homological equation. Izvestiya. Mathematics , Tome 87 (2023) no. 2, pp. 201-251. http://geodesic.mathdoc.fr/item/IM2_2023_87_2_a0/