Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_1_a5, author = {Q. Chang and D. Li and Ch. Sun and S. V. Zelik}, title = {Deterministic and random attractors for a~wave equation with sign changing damping}, journal = {Izvestiya. Mathematics }, pages = {154--199}, publisher = {mathdoc}, volume = {87}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a5/} }
TY - JOUR AU - Q. Chang AU - D. Li AU - Ch. Sun AU - S. V. Zelik TI - Deterministic and random attractors for a~wave equation with sign changing damping JO - Izvestiya. Mathematics PY - 2023 SP - 154 EP - 199 VL - 87 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a5/ LA - en ID - IM2_2023_87_1_a5 ER -
Q. Chang; D. Li; Ch. Sun; S. V. Zelik. Deterministic and random attractors for a~wave equation with sign changing damping. Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 154-199. http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a5/
[1] L. I. Schiff, “Nonlinear meson theory of nuclear forces. I. Neutral scalar mesons with point-contact repulsion”, Phys. Rev. (2), 84:1 (1951), 1–9 | DOI | Zbl
[2] I. E. Segal, “The global Cauchy problem for a relativistic scalar field with power interaction”, Bull. Soc. Math. France, 91 (1963), 129–135 | DOI | MR | Zbl
[3] J. J. Mazo and A. V. Ustinov, “The sine-Gordon equation in Josephson-junction arrays”, The sine-Gordon model and its applications, Nonlinear Syst. Complex., 10, Springer, Cham, 2014, 155–175 | DOI | MR | Zbl
[4] W. H. Hayt, Engineering electromagnetics, 5th ed., McGraw-Hill, Inc., New York, 1989
[5] S. V. Marshall and G. G. Skitek, Electromagnetic concepts and applications, 3rd ed., Prentice-Hall International, Inc., London, 1990
[6] A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant Lect. Notes Math., 9, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[7] J. Pedlosky, Geophysical fluid dynamics, 2nd ed., Springer-Verlag, Berlin, 1987 | DOI | Zbl
[8] K. P. Hadeler, “Reaction telegraph equations and random walk systems”, Stochastic and spatial structures of dynamical systems (Amsterdam 1995), Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45, North-Holland, Amsterdam, 1996, 133–161 | MR | Zbl
[9] M. G. Grillakis, “Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity”, Ann. of Math. (2), 132:3 (1990), 485–509 | DOI | MR | Zbl
[10] J. Shatah and M. Struwe, “Well-posedness in the energy space for semilinear wave equations with critical growth”, Int. Math. Res. Not. IMRN, 1994:7 (1994), 303–309 | DOI | MR | Zbl
[11] J. Shatah and M. Struwe, “Regularity results for nonlinear wave equations”, Ann. of Math. (2), 138:3 (1993), 503–518 | DOI | MR | Zbl
[12] C. D. Sogge, Lectures on non-linear wave equations, 2nd ed., International Press, Boston, MA, 2008 | MR | Zbl
[13] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 ; Russian transl. Certain methods for the solution of nonlinear boundary value problems, Mir, Moscow, 1972 | MR | Zbl | MR | Zbl
[14] A. V. Babin and M. I. Vishik, Attractors of evolution equations, Nauka, Moscow, 1989 (Russian) ; English transl. Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992 | MR | Zbl | DOI | MR | Zbl
[15] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997 | DOI | MR | Zbl
[16] V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[17] S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392 | DOI | MR | Zbl
[18] K. Jörgens, “Das Anfangswertproblem im Großen für eine Klasse nichtlinearer Wellengleichungen”, Math. Z., 77 (1961), 295–308 | DOI | MR | Zbl
[19] J. Ginibre and G. Velo, “The global Cauchy problem for the non linear Klein–Gordon equation”, Math. Z., 189:4 (1985), 487–505 | DOI | MR | Zbl
[20] R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J., 44:3 (1977), 705–714 | DOI | MR | Zbl
[21] M. D. Blair, H. F. Smith, and C. D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26:5 (2009), 1817–1829 | DOI | MR | Zbl
[22] N. Burq, G. Lebeau, and F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc., 21:3 (2008), 831–845 | DOI | MR | Zbl
[23] N. Burq and F. Planchon, “Global existence for energy critical waves in 3-D domains: Neumann boundary conditions”, Amer. J. Math., 131:6 (2009), 1715–1742 | DOI | MR | Zbl
[24] A. Haraux, “Dissipativity in the sense of Levinson for a class of second-order nonlinear evolution equations”, Nonlinear Anal., 6:11 (1982), 1207–1220 | DOI | MR | Zbl
[25] A. Haraux, “Two remarks on hyperbolic dissipative problems”, Nonlinear partial differential equations and their applications, Collège de France seminar (Paris 1983–1984), v. 7, Res. Notes in Math., 122, Pitman, Boston, MA, 1985, 161–179 | MR | Zbl
[26] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988 | DOI | MR | Zbl
[27] J. K. Hale, “Stability and gradient dynamical systems”, Rev. Mat. Complut., 17:1 (2004), 7–57 | DOI | MR | Zbl
[28] T. Caraballo, J. A. Langa, F. Rivero, and A. N. Carvalho, “A gradient-like nonautonomous evolution process”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20:9 (2010), 2751–2760 | DOI | MR | Zbl
[29] J. Arrieta, A. N. Carvalho, and J. K. Hale, “A damped hyerbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5-6 (1992), 841–866 | DOI | MR | Zbl
[30] Dandan Li, Chunyou Sun, and Qingquan Chang, “Global attractor for degenerate damped hyperbolic equations”, J. Math. Anal. Appl., 453:1 (2017), 1–19 | DOI | MR | Zbl
[31] E. Feireisl, “Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent”, Proc. Roy. Soc. Edinburgh Sect. A, 125:5 (1995), 1051–1062 | DOI | MR | Zbl
[32] L. Kapitanski, “Minimal compact global attractor for a damped semilinear wave equation”, Comm. Partial Differential Equations, 20:7-8 (1995), 1303–1323 | DOI | MR | Zbl
[33] V. Kalantarov, A. Savostianov, and S. Zelik, “Attractors for damped quintic wave equations in bounded domains”, Ann. Henri Poincaré, 17:9 (2016), 2555–2584 | DOI | MR | Zbl
[34] A. K. Savostianov and S. V. Zelik, “Uniform attractors for measure-driven quintic wave equation”, Uspekhi Mat. Nauk, 75:2(452) (2020), 61–132 ; English transl. Russian Math. Surveys, 75:2 (2020), 253–320 | DOI | MR | Zbl | DOI
[35] C. Bardos, G. Lebeau, and J. Rauch, “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Control Optim., 30:5 (1992), 1024–1065 | DOI | MR | Zbl
[36] N. Burq and R. Joly, “Exponential decay for the damped wave equation in unbounded domains”, Commun. Contemp. Math., 18:6 (2016), 1650012 | DOI | MR | Zbl
[37] E. Feireisl and E. Zuazua, “Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent”, Comm. Partial Differential Equations, 18:9-10 (1993), 1539–1555 | DOI | MR | Zbl
[38] J. Rauch and M. Taylor, “Exponential decay of solutions to hyperbolic equations in bounded domains”, Indiana Univ. Math. J., 24 (1974), 79–86 | DOI | MR | Zbl
[39] E. Zuazua, “Exponential decay for the semilinear wave equation with locally distributed damping”, Comm. Partial Differential Equations, 15:2 (1990), 205–235 | DOI | MR | Zbl
[40] A. Haraux, P. Martinez, and J. Vancostenoble, “Asymptotic stability for intermittently controlled second-order evolution equations”, SIAM J. Control Optim., 43:6 (2005), 2089–2108 | DOI | MR | Zbl
[41] A. Haraux and M. A. Jendoubi, “Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term”, Evol. Equ. Control Theory, 2:3 (2013), 461–470 | DOI | MR | Zbl
[42] P. Martinez and J. Vancostenoble, “Stabilization of the wave equation by on-off and positive-negative feedbacks”, ESAIM Control Optim. Calc. Var., 7 (2002), 335–377 | DOI | MR | Zbl
[43] R. A. Smith, “Asymptotic stability of $x''+a(t)x'+x = 0$”, Quart. J. Math. Oxford (2), 12:1 (1961), 123–126 | DOI | MR | Zbl
[44] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, Wiley-Interscience [John Wiley Sons], New York, 1995 | DOI | MR | Zbl
[45] G. Fragnelli and D. Mugnai, “Stability of solutions for some classes of nonlinear damped wave equations”, SIAM J. Control Optim., 47:5 (2008), 2520–2539 | DOI | MR | Zbl
[46] G. Fragnelli and D. Mugnai, “Stability of solutions for nonlinear wave equations with a positive–negative damping”, Discrete Contin. Dyn. Syst. Ser. S, 4:3 (2011), 615–622 | DOI | MR | Zbl
[47] P. Freitas, “On some eigenvalue problems related to the wave equation with indefinite damping”, J. Differential Equations, 127:1 (1996), 320–335 | DOI | MR | Zbl
[48] R. Joly, “New examples of damped wave equations with gradient-like structure”, Asymptot. Anal., 53:4 (2007), 237–253 | MR | Zbl
[49] V. Kalantarov and S. Zelik, “A note on a strongly damped wave equation with fast growing nonlinearities”, J. Math. Phys., 56:1 (2015), 011501 | DOI | MR | Zbl
[50] J. H. E. Cartwright, V. M. Eguíluz, E. Hernández-García, and O. Piro, “Dynamics of elastic excitable media”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:11 (1999), 2197–2202 | DOI | Zbl
[51] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 ; Russian transl. Faktorial, Moscow, 1999 | DOI | MR | Zbl
[52] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts Monogr. Phys., 2nd corr. printing, Springer-Verlag, Berlin, 1987 ; Russian transl. Mir, Moscow, 1990 | MR | Zbl | MR
[53] W. Magnus and S. Winkler, Hill's equation, Intersci. Tracts Pure Appl. Math., 20, Interscience Publishers John Wiley Sons, New York–London–Sydney, 1966 | MR | Zbl
[54] V. Chepyzhov and M. Vishik, “A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations”, Indiana Univ. Math. J., 42:3 (1993), 1057–1076 | DOI | MR | Zbl
[55] P. E. Kloeden and J. A. Langa, “Flattening, squeezing and the existence of random attractors”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2077 (2007), 163–181 | DOI | MR | Zbl
[56] A. N. Carvalho, J. A. Langa, and J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Appl. Math. Sci., 182, Springer, New York, 2013 | DOI | MR | Zbl
[57] A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential attractors for dissipative evolution equations, RAM Res. Appl. Math., 37, Masson, Paris; John Wiley Sons, Ltd., Chichester, 1994 | MR | Zbl
[58] A. Miranville, “Exponential attractors for nonautonomous evolution equations”, Appl. Math. Lett., 11:2 (1998), 19–22 | DOI | MR | Zbl
[59] M. Efendiev, S. Zelik, and A. Miranville, “Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems”, Proc. Roy. Soc. Edinburgh Sect. A, 135:4 (2005), 703–730 | DOI | MR | Zbl
[60] A. Miranville and S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, 103–200 | DOI | MR | Zbl
[61] H. Crauel and F. Flandoli, “Attractors for random dynamical systems”, Probab. Theory Related Fields, 100:3 (1994), 365–393 | DOI | MR | Zbl
[62] L. Arnold, Random dynamical systems, Springer Monogr. Math., Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[63] H. Crauel and F. Flandoli, “Hausdorff dimension of invariant sets for random dynamical systems”, J. Dynam. Differential Equations, 10:3 (1998), 449–474 | DOI | MR | Zbl
[64] A. Debussche, “Hausdorff dimension of a random invariant set”, J. Math. Pures Appl. (9), 77:10 (1998), 967–988 | DOI | MR | Zbl
[65] A. Shirikyan and S. Zelik, “Exponential attractors for random dynamical systems and applications”, Stoch. Partial Differ. Equ. Anal. Comput., 1:2 (2013), 241–281 | DOI | MR | Zbl
[66] J. Aaronson, “On the ergodic theory of non-integrable functions and infinite measure spaces”, Israel J. Math., 27:2 (1977), 163–173 | DOI | MR | Zbl