On Romanoff's theorem
Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 113-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results related to Romanoff's theorem are obtained.
Keywords: Romanoff's theorem, elliptic curve.
Mots-clés : Euler's totient function
@article{IM2_2023_87_1_a4,
     author = {A. O. Radomskii},
     title = {On {Romanoff's} theorem},
     journal = {Izvestiya. Mathematics },
     pages = {113--153},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a4/}
}
TY  - JOUR
AU  - A. O. Radomskii
TI  - On Romanoff's theorem
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 113
EP  - 153
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a4/
LA  - en
ID  - IM2_2023_87_1_a4
ER  - 
%0 Journal Article
%A A. O. Radomskii
%T On Romanoff's theorem
%J Izvestiya. Mathematics 
%D 2023
%P 113-153
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a4/
%G en
%F IM2_2023_87_1_a4
A. O. Radomskii. On Romanoff's theorem. Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 113-153. http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a4/

[1] J. Maynard, “Dense clusters of primes in subsets”, Compos. Math., 152:7 (2016), 1517–1554 | DOI | MR | Zbl

[2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[3] N. P. Romanoff, “Über einige Sätze der additiven Zahlentheorie”, Math. Ann., 109:1 (1934), 668–678 ; Russian transl. N. P. Romanov, “On some theorems of additive number theory”, Uspekhi Mat. Nauk, 1940, no. 7, 47–56 | DOI | MR | Zbl

[4] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957 ; Russian transl. Distribution of prime numbers, Mir, Moscow, 1967 | MR | Zbl | MR | Zbl

[5] M. Ram Murty, Problems in analytic number theory, Grad. Texts in Math., 206, Readings in Math., 2nd ed., Springer, New York, 2008 | DOI | MR | Zbl

[6] C. David and J. Wu, “Pseudoprime reductions of elliptic curves”, Canad. J. Math., 64:1 (2012), 81–101 | DOI | MR | Zbl

[7] L. Schnirelmann, “Über additive Eigenschaften von Zahlen”, Math. Ann., 107 (1933), 649–690 ; Russian transl. “On the additive properties of numbers”, Uspekhi Mat. Nauk, 1940, no. 7, 7–46 | DOI | MR | Zbl

[8] H. Hasse, “Abstrakte Begründung der komplexen Multiplikation und Riemannsche Vermutung in Funktionenkörpern”, Abh. Math. Sem. Hamburg, 10:1 (1934), 325–348 | DOI | MR | Zbl

[9] S. V. Konyagin, “On the number of solutions of an $n$th degree congruence with one unknown”, Mat. Sb., 109(151):2(6) (1979), 171–187 ; English transl. Sb. Math., 37:2 (1980), 151–166 | MR | Zbl | DOI