Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2023_87_1_a3, author = {S. A. Nazarov}, title = {``Far-field interaction'' of concentrated masses in~two-dimensional {Neumann} and {Dirichlet} problems}, journal = {Izvestiya. Mathematics }, pages = {61--112}, publisher = {mathdoc}, volume = {87}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a3/} }
TY - JOUR AU - S. A. Nazarov TI - ``Far-field interaction'' of concentrated masses in~two-dimensional Neumann and Dirichlet problems JO - Izvestiya. Mathematics PY - 2023 SP - 61 EP - 112 VL - 87 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a3/ LA - en ID - IM2_2023_87_1_a3 ER -
S. A. Nazarov. ``Far-field interaction'' of concentrated masses in~two-dimensional Neumann and Dirichlet problems. Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 61-112. http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a3/
[1] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Nauka, Moscow, 1973 (Russian) ; English transl. Appl. Math. Sci., 49, Springer-Verlag, New York, 1985 | MR | Zbl | DOI | MR | Zbl
[2] E. Sanchez-Palencia, “Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses”, Trends in applications of pure mathematics to mechanics (Palaiseau 1983), Lecture Notes in Phys., 195, Springer, Berlin, 1984, 346–368 | DOI | MR | Zbl
[3] O. A. Oleĭnik, “The eigenoscillations of bodies with concentrated mass”, Current problems in applied mathematics and in mathematical physics, Nauka, Moscow, 1988, 101–128 (Russian) | MR | Zbl
[4] C. Leal and J. Sanchez-Hubert, “Perturbation of the eigenvalues of a membrane with a concentrated mass”, Quart. Appl. Math., 47:1 (1989), 93–103 | MR | Zbl
[5] J. Sanchez Hubert and E. Sanchez Palencia, Vibration and coupling of continuous systems. Asymptotic methods, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[6] Yu. D. Golovatyĭ, S. A. Nazarov, and O. A. Oleĭnik, “Asymptotic expansions of eigenvalues and eigenfunctions in problems on oscillations of a medium with concentrated perturbations”, Differential equations and functional spaces, Collection of papers, dedicated to the memory of academician S. L. Sobolev, Trudy Mat. Inst. Steklov SSSR, 192, Nauka, Moscow, 1990, 42–60 (Russian) ; English transl. Proc. Steklov Inst. Math., 192 (1992), 43–63 | MR | Zbl
[7] O. A. Oleinik, J. Sanchez-Hubert, and G. A. Yosifian, “On vibrations of a membrane with concentrated masses”, Bull. Sci. Math., 115:1 (1991), 1–27 | MR | Zbl
[8] D. Gómez, M. Lobo, and E. Pérez, “On the eigenfunctions associated with the high frequencies in systems with a concentrated mass”, J. Math. Pures Appl. (9), 78:8 (1999), 841–865 | DOI | MR | Zbl
[9] M. Lobo and E. Pérez, “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mécanique, 331:4 (2003), 303–317 | DOI | Zbl
[10] A. G. Chechkina, “On the behavior of the spectrum of a perturbed Steklov boundary value problem with a weak singularity”, Differ. Uravn., 57:10 (2021), 1407–1420 ; English transl. Differ. Equ., 57:10 (2021), 1382–1395 | MR | Zbl | DOI
[11] S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Modél. Math. Anal. Numér., 27:6 (1993), 777–799 | DOI | MR | Zbl
[12] S. A. Nazarov, “A Sanchez-Palencia problem with Neumann boundary conditions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 11, 60–66 ; English transl. Soviet Math. (Iz. VUZ), 33:11 (1989), 73–78 | MR | Zbl
[13] J. Caínzos, E. Pérez, M. Vilasánchez, “Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses”, Indiana Univ. Math. J., 56:4 (2007), 1939–1987 | DOI | MR | Zbl
[14] V. Chiadò Piat and S. A. Nazarov, “Mixed boundary value problems in singularly perturbed two-dimensional domains with the Steklov spectral condition”, Probl. Mat. Anal., 106 (2020), 91–124 ; English transl. J. Math. Sci. (N.Y.), 251:5 (2020), 655–695 | MR | Zbl | DOI
[15] V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, “Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes”, Izv. Akad. Nauk SSSR Ser. Mat., 48:2 (1984), 347–371 ; English transl. Izv. Math., 24:2 (1985), 321–345 | MR | Zbl | DOI
[16] W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 82, Akademie-Verlag, Berlin, 1991 (German) ; English transl. V. Maz'ya, S. Nazarov, and B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000 | MR | MR | Zbl
[17] A. M. Il'in, “A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. 1. The two-dimensional case”, Mat. Sb., 99(141):4 (1976), 514–537 ; English transl. Sb. Math., 28:4 (1976), 459–480 | MR | Zbl | DOI
[18] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Nauka, Moscow, 1989 (Russian) ; English transl. Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl | DOI | MR | Zbl
[19] M. Lanza de Cristoforis, “Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach”, Analysis (Munich), 28:1 (2008), 63–93 | DOI | MR | Zbl
[20] M. Lanza de Cristoforis, “Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach”, Rev. Mat. Complut., 25:2 (2012), 369–412 | DOI | MR | Zbl
[21] S. A. Nazarov and B. A. Plamenevskiĭ, “The Neumann problem for selfadjoint elliptic systems in a domain with piecewise-smooth boundary”, Tr. Leningr. Mat. Obs., 1, Izd. Leningr. Univ., Leningrad, 1990, 174–211 ; English transl. Proceedings of the St. Petersburg mathematical society, v. 1, Amer. Math. Soc. Transl. Ser. 2, 155, Amer. Math. Soc., Providence, RI, 1993, 169–206 | MR | Zbl | DOI
[22] S. A. Nazarov, “Weighted spaces with detached asymptotics in application to the Navier–Stokes equations”, Advances in mathematical fluid mechanics (Paseky 1999), Springer, Berlin, 2000, 159–191 | DOI | MR | Zbl
[23] S. A. Nazarov, “Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions”, Tr. St. Peterbg. Mat. Obs., 5, Nauchn. Kn., Novosibirsk, 1998, 112–183 ; English transl. Proceedings of the St. Petersburg mathematical society, v. V, Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence, RI, 1999, 77–125 | MR | Zbl | DOI
[24] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964 ; Russian transl. Mir, Moscow, 1967 | MR | Zbl | Zbl
[25] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966 ; Russian transl. Mir, Moscow, 1972 | DOI | MR | Zbl | MR | Zbl
[26] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 ; Russian transl. KomKniga, Moscow, 2006 | MR | Zbl
[27] V. I. Smirnov, A course in higher mathematics, v. 4, Part. 1, 6th ed., Nauka, Moscow, 1974 (Russian) ; German transl. W. I. Smirnow, Lehrgang der höheren Mathematik, v. IV/1, Hochschulbücher fur Math., 5a, Integration and functional analysis, VEB Deutscher Verlag Wissensch., Berlin, 1988 | MR | Zbl | MR | Zbl
[28] V. S. Vladimirov, Generalized functions in mathematical physics, 2nd ed., Nauka, Moscow, 1979 (Russian) ; English transl. Mir, Moscow, 1979 | MR | Zbl | MR | Zbl
[29] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Tr. Mosk. Mat. Obs., 16, Moscow Univ. press, Moscow, 1967, 209–292 ; English transl. Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl
[30] S. Nazarov and B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Nauka, Moscow, 1991 (Russian); English transl. De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994 | DOI | MR | Zbl
[31] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Uspekhi Mat. Nauk, 54:5(329) (1999), 77–142 ; English transl. Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl | DOI
[32] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Nauka, Moscow, 1965 (Russian) ; English transl. Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl | MR | Zbl
[33] M. M. Vainberg and V. A. Trenogin, Theory of branching of solutions of non-linear equations, Nauka, Moscow, 1969 (Russian) ; English transl. Monogr. Textbooks Pure Appl. Math., Noordhoff International Publishing, Leyden, 1974 | MR | Zbl | MR | Zbl
[34] M. Lanza de Cristoforis, “Multiple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Asymptot. Anal., 121:3-4 (2021), 335–365 | DOI | MR | Zbl
[35] M. Sh. Birman and M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Izd. Leningr. Univ., Leningrad, 1980 ; English transl. Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl | MR
[36] M. I. Višik and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Uspekhi Mat. Nauk, 12:5(77) (1957), 3–122 ; English transl. Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | MR | Zbl | DOI | MR | Zbl
[37] S. A. Nazarov and Yu. A. Romashev, “Change of the intensity factor in case of fracture of the cross connection between two collinear cracks”, Izv. Akad. Nauk Arm. SSR, Mekh., 1982, no. 4, 30–40 (Russian) | Zbl