``Far-field interaction'' of concentrated masses in~two-dimensional Neumann and Dirichlet problems
Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 61-112

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the eigenvalues of the Neumann and Dirichlet boundary-value problems in a two-dimensional domain containing several small, of diameter $O(\varepsilon)$, inclusions of large “density” $O(\varepsilon^{-\gamma})$, $\gamma\geqslant2$, that is, the “mass” $O(\varepsilon^{2-\gamma})$ of each of them is comparable ($\gamma=2$) or much bigger ($\gamma>2$) than that of the embracing material. We construct a model of such spectral problems on concentrated masses which (the model) provides an asymptotic expansions of the eigenvalues with remainders of power-law smallness order $O(\varepsilon^{\vartheta})$ as $\varepsilon\to+0$ and $\vartheta\in(0,1)$. Besides, the correction terms are real analytic functions of the parameter $|{\ln \varepsilon}|^{-1}$. A “far-field interaction” of the inclusions is observed at the levels $|{\ln \varepsilon}|^{-1}$ or $|{\ln \varepsilon}|^{-2}$. The results are obtained with the help of the machinery of weighted spaces with detached asymptotics and also by using weighted estimates of solutions to limit problems in a bounded punctured domain and in the intact plane.
Keywords: two-dimensional Neumann and Dirichlet problems, concentrated masses, asymptotics of eigenvalues, weighted spaces with detached asymptotics.
@article{IM2_2023_87_1_a3,
     author = {S. A. Nazarov},
     title = {``Far-field interaction'' of concentrated masses in~two-dimensional {Neumann} and {Dirichlet} problems},
     journal = {Izvestiya. Mathematics },
     pages = {61--112},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - ``Far-field interaction'' of concentrated masses in~two-dimensional Neumann and Dirichlet problems
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 61
EP  - 112
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a3/
LA  - en
ID  - IM2_2023_87_1_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T ``Far-field interaction'' of concentrated masses in~two-dimensional Neumann and Dirichlet problems
%J Izvestiya. Mathematics 
%D 2023
%P 61-112
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a3/
%G en
%F IM2_2023_87_1_a3
S. A. Nazarov. ``Far-field interaction'' of concentrated masses in~two-dimensional Neumann and Dirichlet problems. Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 61-112. http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a3/