Multiple positive solutions for a~Schr\"odinger--Poisson system with critical and supercritical growths
Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 29-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we are concerned with the following Schrödinger–Poisson system $$ \begin{cases} -\Delta u+u+\lambda\phi u= Q(x)|u|^{4}u+\mu \dfrac{|x|^\beta}{1+|x|^\beta}|u|^{q-2}u\text{in }\mathbb{R}^3, \\ -\Delta \phi=u^{2} \text{in }\mathbb{R}^3, \end{cases} $$ where $0 \beta3$,  $6$, $Q(x)$ is a positive continuous function on $\mathbb{R}^3$, $\lambda,\mu>0$ are real parameters. By the variational method and the Nehari method, we obtain that the system has $k$ positive solutions.
Keywords: Schrödinger–Poisson system, critical exponent, supercritical growth.
@article{IM2_2023_87_1_a1,
     author = {J. Lei and H. Suo},
     title = {Multiple positive solutions for {a~Schr\"odinger--Poisson} system with critical and supercritical growths},
     journal = {Izvestiya. Mathematics },
     pages = {29--44},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a1/}
}
TY  - JOUR
AU  - J. Lei
AU  - H. Suo
TI  - Multiple positive solutions for a~Schr\"odinger--Poisson system with critical and supercritical growths
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 29
EP  - 44
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a1/
LA  - en
ID  - IM2_2023_87_1_a1
ER  - 
%0 Journal Article
%A J. Lei
%A H. Suo
%T Multiple positive solutions for a~Schr\"odinger--Poisson system with critical and supercritical growths
%J Izvestiya. Mathematics 
%D 2023
%P 29-44
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a1/
%G en
%F IM2_2023_87_1_a1
J. Lei; H. Suo. Multiple positive solutions for a~Schr\"odinger--Poisson system with critical and supercritical growths. Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 29-44. http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a1/

[1] V. Benci and D. Fortunato, “An eigenvalue problem for the Schrödinger–Maxwell equations”, Topol. Methods Nonlinear Anal., 11:2 (1998), 283–293 | DOI | MR | Zbl

[2] O. Bokanowski, J. L. López, and J. Soler, “On an exchange interaction model for quantum transport: the Schrödinger–Poisson–Slater system”, Math. Models Methods Appl. Sci., 13:10 (2003), 1397–1412 | DOI | MR | Zbl

[3] D. Ruiz, “The Schrödinger–Poisson equation under the effect of a nonlinear local term”, J. Funct. Anal., 237:2 (2006), 655–674 | DOI | MR | Zbl

[4] I. V. Barashenkov, A. D. Gocheva, V. G. Makhankov, and I. V. Puzynin, “Stability of the soliton-like ‘bubbles’ ”, Phys. D, 34:1-2 (1989), 240–254 | DOI | MR | Zbl

[5] V. G. Kartavenko, “Soliton-like solutions in nuclear hydrodynamics”, Yad. Fiz., 40 (1984), 377–388; English transl. Soviet J. Nuclear Phys., 40 (1984), 240–246 | Zbl

[6] V. Benci and D. Fortunato, “Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations”, Rev. Math. Phys., 14:4 (2002), 409–420 | DOI | MR | Zbl

[7] Ching-yu Chen, Yueh-cheng Kuo, and Tsung-fang Wu, “Existence and multiplicity of positive solutions for the nonlinear Schrödinger–Poisson equations”, Proc. Roy. Soc. Edinburgh Sect. A, 143:4 (2013), 745–764 | DOI | MR | Zbl

[8] Fuyi Li, Yuhua Li, and Junping Shi, “Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent”, Commun. Contemp. Math., 16:6 (2014), 1450036 | DOI | MR | Zbl

[9] Gongbao Li, Shuangjie Peng, and Shusen Yan, “Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system”, Commun. Contemp. Math., 12:6 (2010), 1069–1092 | DOI | MR | Zbl

[10] Haidong Liu, “Positive solutions of an asymptotically periodic Schrödinger–Poisson system with critical exponent”, Nonlinear Anal. Real World Appl., 32 (2016), 198–212 | DOI | MR | Zbl

[11] Juntao Sun, Tsung-fang Wu, and Zhaosheng Feng, “Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system”, J. Differential equations, 260:1 (2016), 586–627 | DOI | MR | Zbl

[12] A. Azzollini, “Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity”, J. Differential Equations, 249:7 (2010), 1746–1763 | DOI | MR | Zbl

[13] A. Ambrosetti and D. Ruiz, “Multiple bound states for the Schrödinger–Poisson problem”, Commun. Contemp. Math., 10:3 (2008), 391–404 | DOI | MR | Zbl

[14] Yuhua Li and Hua Gu, “Existence of solutions to Schrödinger–Poisson systems with critical and supercritical nonlinear terms”, Math. Methods Appl. Sci., 42:7 (2019), 2279–2286 | DOI | MR | Zbl

[15] A. Ambrosetti, “On Schrödinger–Poisson systems”, Milan. J. Math., 76 (2008), 257–274 | DOI | MR | Zbl

[16] A. Azzollini and P. d'Avenia, “On a system involving a critically growing nonlinearity”, J. Math. Anal. Appl., 387:1 (2012), 433–438 | DOI | MR | Zbl

[17] C. O. Alves, M. A. S. Souto, and S. H. M. Soares, “Schrödinger–Poisson equations without Ambrosetti–Rabinowitz condition”, J. Math. Anal. Appl., 377:2 (2011), 584–592 | DOI | MR | Zbl

[18] Zhisu Liu and Shangjiang Guo, “On ground state solutions for the Schrödinger–Poisson equations with critical growth”, J. Math. Anal. Appl., 412:1 (2014), 435–448 | DOI | MR | Zbl

[19] Jian Zhang, “On the Schrödinger–Poisson equations with a general nonlinearity in the critical growth”, Nonlinear Anal., 75:18 (2012), 6391–6401 | DOI | MR | Zbl

[20] Jian Zhang, “On ground state and nodal solutions of Schrödinger–Poisson equations with critical growth”, J. Math. Anal. Appl., 428:1 (2015), 387–404 | DOI | MR | Zbl

[21] Lirong Huang, E. M. Rocha, and Jianqing Chen, “Positive and sign-changing solutions of a Schrödinger–Poisson system involving a critical nonlinearity”, J. Math. Anal. Appl., 408:1 (2013), 55–69 | DOI | MR | Zbl

[22] Leiga Zhao and Fukun Zhao, “Positive solutions for Schrödinger–Poisson equations with a critical exponent”, Nonlinear Anal., 70:6 (2009), 2150–2164 | DOI | MR | Zbl

[23] Daomin Cao and J. Chabrowski, “Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity”, Differential Integral Equations, 10:5 (1997), 797–814 | MR | Zbl

[24] Daomin Cao and E. S. Noussair, “Multiple positive and nodal solutions for semilinear elliptic problems with critical exponents”, Indiana Univ. Math. J., 44:4 (1995), 1249–1271 | DOI | MR | Zbl

[25] Pigong Han, “Multiple solutions to singular critical elliptic equations”, Israel J. Math., 156 (2006), 359–380 | DOI | MR | Zbl

[26] Yi Sheng Huang, “Multiple positive solutions of nonhomogeneous equations involving the $p$-Laplacian”, Nonlinear Anal., 43:7 (2001), 905–922 | DOI | MR | Zbl

[27] Huei-li Lin, “Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent”, Nonlinear Anal., 75:4 (2012), 2660–2671 | DOI | MR | Zbl

[28] Jia-feng Liao, Jiu Liu, Peng Zhang, and Chun-Lei Tang, “Existence and multiplicity of positive solutions for a class of elliptic equations involving critical Sobolev exponents”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110:2 (2016), 483–501 | DOI | MR | Zbl

[29] H. Brézis and L. Nirenberg, “Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents”, Comm. Pure. Appl. Math., 36:4 (1983), 437–477 | DOI | MR | Zbl

[30] P.-L. Lions, “The concentration-compactness principle in the calculus of variations. The limit case. I”, Rev. Mat. Iberoamericana, 1:1 (1985), 145–201 | DOI | MR | Zbl

[31] I. Ekeland, “On the variational principle”, J. Math. Anal. Appl., 48:2 (1974), 324–353 | DOI | MR | Zbl