Framed motivic $\Gamma$-spaces
Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 1-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We combine several mini miracles to achieve an elementary understanding of infinite loop spaces and very effective spectra in the algebro-geometric setting of motivic homotopy theory. Our approach combines $\Gamma$-spaces and Voevodsky's framed correspondences into the concept of framed motivic $\Gamma$-spaces; these are continuous or enriched functors of two variables that take values in framed motivic spaces. We craft proofs of our main results by imposing further axioms on framed motivic $\Gamma$-spaces such as a Segal condition for simplicial Nisnevich sheaves, cancellation, $\mathbb{A}^1$- and $\sigma$-invariance, Nisnevich excision, Suslin contractibility, and grouplikeness. This adds to the discussion in the literature on coexisting points of view on the $\mathbb{A}^1$-homotopy theory of algebraic varieties.
Keywords: framed correspondences, motivic spaces, framed motivic $\Gamma$-spaces, connective and very effective motivic spectra, infinite motivic loop spaces.
Mots-clés : $\Gamma$-spaces
@article{IM2_2023_87_1_a0,
     author = {G. A. Garkusha and I. A. Panin and P. {\O}stv{\ae}r},
     title = {Framed motivic $\Gamma$-spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1--28},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a0/}
}
TY  - JOUR
AU  - G. A. Garkusha
AU  - I. A. Panin
AU  - P. Østvær
TI  - Framed motivic $\Gamma$-spaces
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1
EP  - 28
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a0/
LA  - en
ID  - IM2_2023_87_1_a0
ER  - 
%0 Journal Article
%A G. A. Garkusha
%A I. A. Panin
%A P. Østvær
%T Framed motivic $\Gamma$-spaces
%J Izvestiya. Mathematics 
%D 2023
%P 1-28
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a0/
%G en
%F IM2_2023_87_1_a0
G. A. Garkusha; I. A. Panin; P. Østvær. Framed motivic $\Gamma$-spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a0/