Framed motivic $\Gamma$-spaces
Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 1-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We combine several mini miracles to achieve an elementary understanding of infinite loop spaces and very effective spectra in the algebro-geometric setting of motivic homotopy theory. Our approach combines $\Gamma$-spaces and Voevodsky's framed correspondences into the concept of framed motivic $\Gamma$-spaces; these are continuous or enriched functors of two variables that take values in framed motivic spaces. We craft proofs of our main results by imposing further axioms on framed motivic $\Gamma$-spaces such as a Segal condition for simplicial Nisnevich sheaves, cancellation, $\mathbb{A}^1$- and $\sigma$-invariance, Nisnevich excision, Suslin contractibility, and grouplikeness. This adds to the discussion in the literature on coexisting points of view on the $\mathbb{A}^1$-homotopy theory of algebraic varieties.
Keywords: framed correspondences, motivic spaces, framed motivic $\Gamma$-spaces, connective and very effective motivic spectra, infinite motivic loop spaces.
Mots-clés : $\Gamma$-spaces
@article{IM2_2023_87_1_a0,
     author = {G. A. Garkusha and I. A. Panin and P. {\O}stv{\ae}r},
     title = {Framed motivic $\Gamma$-spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1--28},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a0/}
}
TY  - JOUR
AU  - G. A. Garkusha
AU  - I. A. Panin
AU  - P. Østvær
TI  - Framed motivic $\Gamma$-spaces
JO  - Izvestiya. Mathematics 
PY  - 2023
SP  - 1
EP  - 28
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a0/
LA  - en
ID  - IM2_2023_87_1_a0
ER  - 
%0 Journal Article
%A G. A. Garkusha
%A I. A. Panin
%A P. Østvær
%T Framed motivic $\Gamma$-spaces
%J Izvestiya. Mathematics 
%D 2023
%P 1-28
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a0/
%G en
%F IM2_2023_87_1_a0
G. A. Garkusha; I. A. Panin; P. Østvær. Framed motivic $\Gamma$-spaces. Izvestiya. Mathematics , Tome 87 (2023) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/IM2_2023_87_1_a0/

[1] G. Segal, “Categories and cohomology theories”, Topology, 13:3 (1974), 293–312 | DOI | MR | Zbl

[2] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math., 347, Springer-Verlag, Berlin–New York, 1973 ; Russian transl. Mir, Moscow, 1977 | DOI | MR | Zbl | MR

[3] A. K. Bousfield and E. M. Friedlander, “Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets”, Geometric applications of homotopy theory (Evanston, IL 1977), v. 2, Lecture Notes in Math., 658, Springer-Verlag, Berlin, 1978, 80–130 | DOI | MR | Zbl

[4] B. I. Dundas, T. Goodwillie, and R. McCarthy, The local structure of algebraic K-theory, Algebr. Appl., 18, Springer-Verlag London, Ltd., London, 2013 | DOI | MR | Zbl

[5] F. Morel and V. Voevodsky, “$\mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 45–143 | DOI | MR | Zbl

[6] V. Voevodsky, “$\mathbb A^1$-homotopy theory”, Proceedings of the international congress of mathematicians, Vol. I (Berlin 1998), Doc. Math., Extra Vol. 1 (1998), 579–604 | MR | Zbl

[7] V. Voevodsky, Notes on framed correspondences, 2001 www.math.ias.edu/vladimir/publications

[8] G. Garkusha and I. Panin, “Framed motives of algebraic varieties (after V. Voevodsky)”, J. Amer. Math. Soc., 34:1 (2021), 261–313 | DOI | MR | Zbl

[9] B. I. Dundas, M. Levine, P. A. Østvær, O. Röndigs, and V. Voevodsky, Motivic homotopy theory, Lectures from the summer school held in Nordfjordeid, August 2002, Universitext, Springer-Verlag, Berlin, 2007 | DOI | MR | Zbl

[10] J. F. Jardine, Local homotopy theory, Springer Monogr. Math., Springer, New York, 2015 | DOI | MR | Zbl

[11] A. A. Suslin, “On the Grayson spectral sequence”, Number theory, algebra, and algebraic geometry, Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 241, Nauka, MAIK “Nauka/Interperiodika”, Moscow, 2003, 218–253 ; Proc. Steklov Inst. Math., 241 (2003), 202–237 | MR | Zbl

[12] T. Bachmann and J. Fasel, On the effectivity of spectra representing motivic cohomology theories, arXiv: 1710.00594v3

[13] G. Garkusha and I. Panin, The triangulated categories of framed bispectra and framed motives, arXiv: 1809.08006

[14] M. Spitzweck and P. A. Østvær, “Motivic twisted $K$-theory”, Algebr. Geom. Topol., 12:1 (2012), 565–599 | DOI | MR | Zbl

[15] A. Ananyevskiy, G. Garkusha, and I. Panin, “Cancellation theorem for framed motives of algebraic varieties”, Adv. Math., 383 (2021), 107681 | DOI | MR | Zbl

[16] G. Garkusha and I. Panin, “Homotopy invariant presheaves with framed transfers”, Camb. J. Math., 8:1 (2020), 1–94 | DOI | MR | Zbl

[17] G. Garkusha, A. Neshitov, and I. Panin, “Framed motives of relative motivic spheres”, Trans. Amer. Math. Soc., 374:7 (2021), 5131–5161 | DOI | MR | Zbl

[18] E. Elmanto, M. Hoyois, A. A. Khan, V. Sosnilo, and M. Yakerson, “Motivic infinite loop spaces”, Camb. J. Math., 9:2 (2021), 431–549 | DOI | MR | Zbl

[19] B. A. Blander, “Local projective model structures on simplicial presheaves”, K-Theory, 24:3 (2001), 283–301 | DOI | MR | Zbl

[20] B. I. Dundas, O. Röndigs, and P. A. Østvær, “Motivic functors”, Doc. Math., 8 (2003), 489–525 | MR | Zbl

[21] B. I. Dundas, O. Röndigs, and P. A. Østvær, “Enriched functors and stable homotopy theory”, Doc. Math., 8 (2003), 409–488 | MR | Zbl

[22] B. Day, “On closed categories of functors”, Reports of the midwest category seminar IV, Lecture Notes in Math., 137, Springer, Berlin, 1970, 1–38 | DOI | MR | Zbl

[23] G. Garkusha and A. Neshitov, Fibrant resolutions for motivic Thom spectra, arXiv: 1804.07621

[24] I. Panin and C. Walter, “On the algebraic cobordism spectra $\mathbf{MSL}$ and $\mathbf{MSp}$”, Algebra i Analiz, 34:1 (2022), 144–187

[25] G. Garkusha, “Reconstructing rational stable motivic homotopy theory”, Compos. Math., 155:7 (2019), 1424–1443 | DOI | MR | Zbl

[26] B. Calmès and J. Fasel, The category of finite $MW$-correspondences, arXiv: 1412.2989v2

[27] V. Voevodsky, “Triangulated category of motives over a field”, Cycles, transfers and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238 | DOI | MR | Zbl

[28] M. E. Walker, Motivic complexes and the $K$-theory of automorphisms, PhD Thesis, Univ. of Illinois, Urbana-Champaign, 1996 | MR

[29] M. Hovey, “Spectra and symmetric spectra in general model categories”, J. Pure Appl. Algebra, 165:1 (2001), 63–127 | DOI | MR | Zbl

[30] T. Bachmann, “The generalized slices of Hermitian $K$-theory”, J. Topol., 10:4 (2017), 1124–1144 | DOI | MR | Zbl

[31] A. Ananyevskiy, M. Levine, and I. Panin, “Witt sheaves and the $\eta$-inverted sphere spectrum”, J. Topol., 10:2 (2017), 370–385 | DOI | MR | Zbl

[32] V. Voevodsky, “Simplicial radditive functors”, J. $K$-Theory, 5:2 (2010), 201–244 | DOI | MR | Zbl

[33] M. Hovey, Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl

[34] O. Röndigs and P. A. Østvær, “Modules over motivic cohomology”, Adv. Math., 219:2 (2008), 689–727 | DOI | MR | Zbl

[35] M. Hoyois, S. Kelly, and P. A. Østvær, “The motivic Steenrod algebra in positive characteristic”, J. Eur. Math. Soc. (JEMS), 19:12 (2017), 3813–3849 | DOI | MR | Zbl

[36] M. Levine, Yaping Yang, Gufang Zhao, and J. Riou, “Algebraic elliptic cohomology theory and flops. I”, Math. Ann., 375:3-4 (2019), 1823–1855 | DOI | MR | Zbl