@article{IM2_2022_86_6_a9,
author = {S. O. Speranski and F. N. Pakhomov},
title = {On the coprimeness relation from the viewpoint of monadic second-order logic},
journal = {Izvestiya. Mathematics},
pages = {1225--1239},
year = {2022},
volume = {86},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a9/}
}
S. O. Speranski; F. N. Pakhomov. On the coprimeness relation from the viewpoint of monadic second-order logic. Izvestiya. Mathematics, Tome 86 (2022) no. 6, pp. 1225-1239. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a9/
[1] D. Richard, “What are weak arithmetics?”, Theoret. Comput. Sci., 257:1-2 (2001), 17–29 | DOI | MR | Zbl
[2] J. Y. Halpern, “Presburger arithmetic with unary predicates is $\Pi_1^1$ complete”, J. Symbolic Logic, 56:2 (1991), 637–642 | DOI | MR | Zbl
[3] S. O. Speranski, “A note on definability in fragments of arithmetic with free unary predicates”, Arch. Math. Logic, 52:5-6 (2013), 507–516 | DOI | MR | Zbl
[4] A. Bès and D. Richard, “Undecidable extensions of Skolem arithmetic”, J. Symbolic Logic, 63:2 (1998), 379–401 | DOI | MR | Zbl
[5] J. Robinson, “Definability and decision problems in arithmetic”, J. Symbolic Logic, 14:2 (1949), 98–114 | DOI | MR | Zbl
[6] A. Bès, “A survey of arithmetical definability”, A tribute to Maurice Boffa, Bull. Belg. Math. Soc. Simon Stevin, suppl., Soc. Math. Belgique, Brussels, 2001, 1–54 | MR | Zbl
[7] S. O. Speranski, “Some new results in monadic second-order arithmetic”, Computability, 4:2 (2015), 159–174 | DOI | MR | Zbl
[8] H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York–Toronto, ON–London, 1967 ; Russian transl. Mir, Moscow, 1972 | MR | Zbl | MR | Zbl
[9] J. R. Büchi, “Weak second-order arithmetic and finite automata”, Z. Math. Logik Grundlagen Math., 6:1-6 (1960), 66–92 | DOI | MR | Zbl
[10] J. R. Büchi, “On a decision method in restricted second order arithmetic”, Logic, methodology and philosophy of science (1960), Stanford Univ. Press, Stanford, CA, 1962, 1–11 | MR | Zbl