On the coprimeness relation from the viewpoint of monadic second-order logic
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1225-1239
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak{C}$ denote the structure of the natural numbers with the
coprimeness relation. We prove that for each non-zero natural number $n$,
if a $\Pi^1_n$-set of natural numbers is closed under automorphisms
of $\mathfrak{C}$, then it is definable in $\mathfrak{C}$ by a monadic
$\Pi^1_n$-formula of the signature of $\mathfrak{C}$ having exactly $n$ set
quantifiers.
On the other hand, we observe that even a much weaker version
of this property fails for certain expansions of $\mathfrak{C}$.
Keywords:
coprimeness, monadic second-order logic, definability, weak arithmetics.
@article{IM2_2022_86_6_a9,
author = {S. O. Speranski and F. N. Pakhomov},
title = {On the coprimeness relation from the viewpoint of monadic second-order logic},
journal = {Izvestiya. Mathematics },
pages = {1225--1239},
publisher = {mathdoc},
volume = {86},
number = {6},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a9/}
}
TY - JOUR AU - S. O. Speranski AU - F. N. Pakhomov TI - On the coprimeness relation from the viewpoint of monadic second-order logic JO - Izvestiya. Mathematics PY - 2022 SP - 1225 EP - 1239 VL - 86 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a9/ LA - en ID - IM2_2022_86_6_a9 ER -
S. O. Speranski; F. N. Pakhomov. On the coprimeness relation from the viewpoint of monadic second-order logic. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1225-1239. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a9/